Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) a...Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.展开更多
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has...Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.展开更多
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ...A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.展开更多
Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harbor...Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.展开更多
The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compoun...The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments.展开更多
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a...Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.展开更多
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Realizing phase transitions via non-thermal sample manipulations is important not only for applications,but also for uncovering the underlying physics.Here,we report on the discovery of two distinct metal–insulator t...Realizing phase transitions via non-thermal sample manipulations is important not only for applications,but also for uncovering the underlying physics.Here,we report on the discovery of two distinct metal–insulator transitions in 1T-TaS_(2) via angle-resolved photoemission spectroscopy and in-situ rubidium deposition.At 205 K,the rubidium deposition drives a normal metal–insulator transition via filling electrons into the conduction band.While at 225 K,however,the rubidium deposition drives a bandwidth-controlled Mott transition as characterized by a rapid collapsing of Mott gap and a loss of spectral weight of the lower Hubbard band.Our result,from a doping-controlled perspective,succeeds in distinguishing the metallic,band-insulating,and Mott-insulating phases of 1T-TaS_(2),manifesting a delicate balance among the electronitineracy,interlayer-coupling and Coulomb repulsion.We also establish an effective method to tune the balance between these interactions,which is useful in seeking exotic electronic phases and designing functional phase-changing devices.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating...Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample.展开更多
Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,s...Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.展开更多
Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investig...Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,si...Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,simple training,and fewer restrictions on the number of generated samples.However,in the field of transmission line insulator images,the freely synthesized samples are prone to produce fuzzy backgrounds and disordered samples of the main insulator features.To solve the above problems,this paper uses the cycle generative adversarial network(Cycle-GAN)used for domain conversion in the generation countermeasure network as the initial framework and uses the self-attention mechanism and channel attention mechanism to assist the conversion to realize the mutual conversion of different insulator samples.The attention module with prior knowledge is used to build the generation countermeasure network,and the generative adversarial network(GAN)model with local controllable generation is built to realize the directional generation of insulator belt defect samples.The experimental results show that the samples obtained by this method are improved in a number of quality indicators,and the quality effect of the samples obtained is excellent,which has a reference value for the data expansion of insulator images.展开更多
We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency opti...We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.展开更多
基金Project supported by the Ministry of Science and Technology of China (Grant No. 2022YFA1403800)the National Natural Science Foundation of China (Grant Nos. U2032204,12188101, and U22A6005)+2 种基金the Chinese Academy of Sciences (Grant No. XDB33000000)the Synergetic Extreme Condition User Facility (SECUF)the Center for Materials Genome。
文摘Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.
文摘Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.
基金supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Fund for Distinguished Young Scholars of Hunan Province of China(No.2023JJ10055)。
文摘A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.
文摘Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.
文摘The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments.
基金the financial support from the National Key Research and Development Program of China(No.2021YFF0500802)the National Natural Science Foundation of China(No.51890904,No.52022022,and No.52278247)the Scientific Research and Innovation Plan of Jiangsu Province(KYCX21_0090)。
文摘Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11888101,91421107,and 11574004)the National Key Research and Development Program of China(Grant Nos.2018YFA0305602 and 2016YFA0301003)。
文摘Realizing phase transitions via non-thermal sample manipulations is important not only for applications,but also for uncovering the underlying physics.Here,we report on the discovery of two distinct metal–insulator transitions in 1T-TaS_(2) via angle-resolved photoemission spectroscopy and in-situ rubidium deposition.At 205 K,the rubidium deposition drives a normal metal–insulator transition via filling electrons into the conduction band.While at 225 K,however,the rubidium deposition drives a bandwidth-controlled Mott transition as characterized by a rapid collapsing of Mott gap and a loss of spectral weight of the lower Hubbard band.Our result,from a doping-controlled perspective,succeeds in distinguishing the metallic,band-insulating,and Mott-insulating phases of 1T-TaS_(2),manifesting a delicate balance among the electronitineracy,interlayer-coupling and Coulomb repulsion.We also establish an effective method to tune the balance between these interactions,which is useful in seeking exotic electronic phases and designing functional phase-changing devices.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
文摘Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.22178107,U21A2060,22178116)Xinjiang Uygur Autonomous Region Key Research and Development Program(Grant No.2022B01030)Shanghai Pujiang Program(Grant No.21PJD019)。
文摘Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.
基金the support of the National Natural Science Foundation of China (Grant No.12304195)the Chutian Scholars Program in Hubei Province+3 种基金supported by the National Natural Science Foundation of China (Grant No.12074107)the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province (Grant No.T2020001)the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012)supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342)。
文摘Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金supported in part by the National Natural Science Foundation of China under Grant No.61973055Fundamental Research Funds for the Central Universities under Grant No.ZYGX2020J011Regional Innovation Cooperation Funds of Sichuan under Grant No.2024YFHZ0089.
文摘Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,simple training,and fewer restrictions on the number of generated samples.However,in the field of transmission line insulator images,the freely synthesized samples are prone to produce fuzzy backgrounds and disordered samples of the main insulator features.To solve the above problems,this paper uses the cycle generative adversarial network(Cycle-GAN)used for domain conversion in the generation countermeasure network as the initial framework and uses the self-attention mechanism and channel attention mechanism to assist the conversion to realize the mutual conversion of different insulator samples.The attention module with prior knowledge is used to build the generation countermeasure network,and the generative adversarial network(GAN)model with local controllable generation is built to realize the directional generation of insulator belt defect samples.The experimental results show that the samples obtained by this method are improved in a number of quality indicators,and the quality effect of the samples obtained is excellent,which has a reference value for the data expansion of insulator images.
基金Project supported by the the National Natural Science Foundation of China (Grant No.12274442)the National Key R&D Program of China (Grant No.2022YFA1403901)。
文摘We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.