期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Thermal Performance Analysis of Plaster Reinforced with Raffia Vinifera Particles for Use as Insulating Materials in Building
1
作者 Etienne Malbila Danielle Manuella Djouego Tagne +3 位作者 Bouto Kossi Imbga Lareba Adelaide Ouedraogo Sié Kam David Yemboini Kader Toguyeni 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期112-138,共27页
The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compoun... The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments. 展开更多
关键词 Fibres PLASTER Thermal Test Mechanical Test insulating material Indoor Comfort
下载PDF
Research on non-steam-cured and non-fired fly-ash thermal insulating materials 被引量:3
2
作者 LUO Yu-ping WANG Li-jiu 《Journal of China University of Mining and Technology》 EI 2008年第1期116-121,共6页
A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive st... A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material. 展开更多
关键词 FLY-ASH thermal insulating materials non-steam curing non-fsintering water resistance
下载PDF
Preparation of Nanoporous Thermal Insulating Materials and Their Application as Ladle Linings 被引量:1
3
作者 YU Jingkun HAN Lu 《China's Refractories》 CAS 2014年第4期13-15,共3页
The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was... The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material. 展开更多
关键词 fumed silica glass fiber NANOPOROUS thermal insulating material thermal conductivity ladle lining
下载PDF
Light Weight Insulating Material Prepared from Rice Husk
4
作者 I. Bhatti K. Qureshi M.S. Shaikh 《Journal of Environmental Science and Engineering》 2011年第7期882-885,共4页
Pakistan is at 12th number in the rank of rice production countries. Along with the production of 4,500 thousand metric tons of rice enormous quantity of rice husk is left as waste. Light weight thermal insulating mat... Pakistan is at 12th number in the rank of rice production countries. Along with the production of 4,500 thousand metric tons of rice enormous quantity of rice husk is left as waste. Light weight thermal insulating material was prepared from rice husk. Epoxy resin was used as a binder and was mixed with rice husk to give it strength, the sample was compressed at 7000 psi to produce cylindrical shape block. The thermal conductivity of the sample A, B, C and D of thickness 1, 2, 3 and 4 cm respectively was measured 0.0241, 0.0240, 0.239 and 0.0219 watts/m-k, which was lower than the common mortar by 51.74%, therefore it could be used in buildings and roof as an insulating material. This would be a suitable alternative which would not only save energy but also solve the environmental disposal problems as well. The results are very promising and we hope insulation material prepared would be useable in hot climate regions like Pakistan in buildings to prevent heat transfer. 展开更多
关键词 insulating material BINDER thermal conductivity.
下载PDF
Design and application of a small electrode experimental installation for resistivity measurement of mineral and solid insulating material 被引量:8
5
作者 WANG Ling LUO Ke +3 位作者 LI ZiQiang GUAN SongYun GE Wei ZHANG JunYuan 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期819-825,共7页
There has not been an effective method to measure the resistivity of small-size sample of mineral and solid insulating material until now.According to the Chinese National Standard(GB/T1410-2006) and features of digit... There has not been an effective method to measure the resistivity of small-size sample of mineral and solid insulating material until now.According to the Chinese National Standard(GB/T1410-2006) and features of digital high resistance meter,a small electrode experimental installation was developed;it can work with current high resistance meter;the sample decreases to 18 mm from standard size 100 mm in diameter and reduces by 30.86 times in area.A three-electrode system is supported and precisely positioned by two insulating bases whose diameter is 60 mm and height is 20 mm,which ensures accuracy of device structure and reliability of measuring results.The key technological parameters are as follows:diameter of high voltage electrode is 18mm;diameter of measuring electrode is 14.6 mm;internal diameter and external diameter of guard electrode are 16 and 18 mm,respectively;the gap between guard electrode and measuring electrode is set at 0.6 mm.These parameters are adequate for the measurement of flat specimen of mineral and solid insulating material whose diameter is 18 mm.According to the confirmatory experiment on the volume resistivity and surface resistivity,the measuring results are almost the same,using a small electrode experimental installation and a standard electrode. 展开更多
关键词 RESISTIVITY insulating property insulating material mineral physics material physics
原文传递
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
6
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
The Application of Solid Waste in Thermal Insulation Materials: A Review
7
作者 Ming Liu Pinghua Zhu +2 位作者 Xiancui Yan Haichao Li Xintong Chen 《Journal of Renewable Materials》 EI CAS 2024年第2期329-347,共19页
As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.... As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials. 展开更多
关键词 Solid waste building energy consumption insulation material SUSTAINABILITY
下载PDF
Preparation of Periclase-forsterite Lightweight Heat-insulating Refractories by Molten Salt Method
8
作者 WANG Shaoyang HOU Qingdong +3 位作者 QI Xin LUO Xudong YOU Jiegang ZHANG Ling 《China's Refractories》 CAS 2023年第4期33-37,共5页
Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating... Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample. 展开更多
关键词 sodium chloride molten salt PERICLASE FORSTERITE lightweight insulating material
下载PDF
Preparation of Ultra-light Xonotlite Thermal Insulation Material Using Carbide Slag 被引量:4
9
作者 刘飞 曹建新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期295-297,共3页
Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation m... Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation material is made up of large numbers of "chestnut bur shape" particles. Optimum conditions of calcination temperature of carbide slag, synthesis reaction temperature and time, stirring rate, CaO/SiO2 mol ratio, water/solid weight ratio, amount of fiberglass, molding pressures, dryness temperatures and the presence of dispersant (glycol and polyvinyl alcohol) favor the preparation of xonotlite thermal insulation material. The evaluation of xonotlite thermal insulation material reveals that the product is ultra-light and excellent in physical performances. Such a little amount of impurities in carbide slag has no effect on the phase, morphology, stability at high temperature and physical performances of products. 展开更多
关键词 carbide slag ultra-light xonotlite hydrothermal synthesis thermal insulation material
下载PDF
Carbon foams prepared from coal tar pitch for building thermal insulation material with low cost 被引量:6
10
作者 Xiang Liu Yanli Wang Liang Zhan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期415-420,共6页
A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. ... A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building. 展开更多
关键词 Carbon foam Coal tar pitch Building thermal insulation materials
下载PDF
Hollow glass microspheres/silicone rubber composite materials toward materials for high performance deep in-situ temperaturepreserved coring 被引量:1
11
作者 Jian-Ping Yang Ling Chen +6 位作者 Xiao-Bin Gu Zhi-Yu Zhao Cheng-Hang Fu Dong-Sheng Yang Dong-Zhuang Tian Zhi-Sheng Chen He-Ping Xie 《Petroleum Science》 SCIE CAS CSCD 2022年第1期309-320,共12页
Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)de... Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)devices were developed to assess deep petroleum reserves accurately.Herein,hollow glass microspheres(HGMs)/silicone rubber(SR)composites that exhibit excellent thermal insulation properties were prepared as thermal insulation materials for deep ITP-coring devices.The mechanism and process of heat transfer in the composites were explored,as well as their other properties.The results show that the HGMs exhibit good compatibility with the SR matrix.When the volume fraction of the HGMs is increased to 50%,the density of the HGMs/SR composites is reduced from 0.97 to 0.56 g/cm^(3).The HGMs filler introduces large voids into the composites,reducing their thermal conductivity to 0.11 W/m·K.The addition of HGMs into the composites further enhances the thermal stability of the SR,wherein the higher the HGMs filler content,the better the thermal stability of the composites.HGMs significantly enhance the mechanical strength of the SR.HGMs increase the compressive strength of the composites by 828%and the tensile strength by 164%.Overall,HGMs improve the thermal insulation,pressure resistance,and thermal stability of HGMs/SR composites. 展开更多
关键词 In-situ temperature-preserved coring(ITP-coring) Deep in-situ conditions Thermal insulation materials HGMs/SR composites
下载PDF
Sustainability of Sheep Fleece Utilization in Jordan as an Insulation Material to Decrease Environmental Pollution, Increase Farmers’ Income, and Create New Job Opportunities 被引量:1
12
作者 Bahieh M. Alma’atah Taha M. Alkhamis 《Journal of Environmental Protection》 2020年第10期821-837,共17页
This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an ex... This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an excellent resource for buildings insulation material. A linear regression model is used to predict sheep number for the period (2017-2030). Based on the predicted number of Sheep an estimated annual average production of wool is found for the period (2017-2030) to be (3.586 × 10<sup>3</sup> ton). The average cost per kg of fleece produced is calculated to be 0.39 JD, and the estimated price of fleece per head, if market is available for raw fleece, is 1 JD. Average annual financial losses by farmers are calculated to be (3.743 × 10<sup>6</sup> JD) for the period 2002-2016, and they were estimated to be (9.421 × 10<sup>6</sup> JD) for the years 2017-2030. Physical characteristics of sheep-wool are presented and compared to other competitive insulation materials (polystyrene and rockwool). Sustainability of sheep-wool production to be utilized as an insulation material is found to be an excellent solution to the huge waste of wool with respect to farmers and National income and to the problems associated with environmental impact. Results can be generalized to similar cases worldwide. 展开更多
关键词 Sheep Fleece Insulation material Natural Resources Environmental Pollution JORDAN
下载PDF
Initial Studies Concerning the Current Status and Problems on the Formulation and Revision of the National Standards for Electric Insulation Materials 被引量:1
13
作者 Zhu Meilan 《China Standardization》 2004年第4期40-43,共4页
关键词 Initial Studies Concerning the Current Status and Problems on the Formulation and Revision of the National Standards for Electric Insulation materials
下载PDF
Analysis of the Performances of a New Type of Alumina Nanocomposite Structural Material Designed for the Thermal Insulation of High-Rise Buildings
14
作者 Yue Yu 《Fluid Dynamics & Materials Processing》 EI 2023年第3期697-709,共13页
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and... The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer. 展开更多
关键词 ALUMINA NANOmaterialS low thermal conductivity high-rise building insulation materials sol-gel method
下载PDF
Effect of Pyrophyllite Addition on Properties of Lightweight Insulation Refractory Materials
15
作者 CHEN Ruoyu LI Yuanbing +4 位作者 XIANG Ruofei LI Shujing FAN Xiafei LI Yawei SANG Shaobai 《China's Refractories》 CAS 2017年第3期38-42,共5页
To solve the problem of over-high density of lightweight insulation refractory bricks prepared with fly ash, new lightweight insulation refractory materials with density 〈 0. 89 g · cm^-3 were .synthesized using... To solve the problem of over-high density of lightweight insulation refractory bricks prepared with fly ash, new lightweight insulation refractory materials with density 〈 0. 89 g · cm^-3 were .synthesized using pyrophyl-lite, .fly ash, and Suzhou clay as the main starting materials and saw dast as the pore forming substance, and controlling the addition of the pyrophyllite (20%, 30% , and 40% by mass ) and the treating temperature (1 250, 1 300, 1 350, and 1 400 ℃ ). The synthesized materials were characterized by the XRD, SEM and the thermal conductivity measuring in.strument. The results show at pyrophyllite addition of 30% and treat temperature of l 400 ℃ , the material can achieve linear shrinkage of 6. 6%, apparent porosity of 57%, bulk density of 0. 75 g · cm^-3, compressive strength of 2.7 MPa, and thermal conductivity at 350 ℃ of 0. 152 -0. 216 W·( m·K)^-1.This indicates that the pyrophyllite decomposition at high temperatures forms mullite and amorphous quartz introducing volume expansion, which counteracts some shrinkage at high temperatures. So it is feasible to use pyrophyllite, fly ash waste and clay to prepare lightweight insulation refractory materials. 展开更多
关键词 PYROPHYLLITE fly ash lightweight insulation refractory materials thermal conductivity bulk density compressive strength
下载PDF
Preparation and Properties of TiO2-Coated Hollow Glass Microspheres as Thermal Insulation Materials for Energy-Saving Buildings
16
作者 Chunyu Wu Weilin Wang Huiming Ji 《Transactions of Tianjin University》 EI CAS 2020年第4期283-291,共9页
A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter ... A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions. 展开更多
关键词 TIO2 Hollow glass microspheres Thermal insulation materials Near infrared reflectance
下载PDF
Preparation of Magnesia Insulation Materials by Walnut Shell Powder Impregnated with Silica Sol
17
作者 JIAO Changfa LI Guohua KANG Chi 《China's Refractories》 CAS 2022年第3期34-37,共4页
In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregat... In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregates(using high purity magnesia powder as starting material and potassium oleate as the foaming agent),middle grade magnesia powder,calcium aluminate cement,and SiO_(2) micropowder as starting materials,introducing walnut shell powder impregnated with silica sol(short for Sws)as a pore-forming agent.The effects of the Sws addition(0,10%,15%,and 20%,by mass)and the sintering temperature(1300,1350,1400,and 1480℃)on the properties of magnesia insulation materials were studied.The results show that(1)for the specimens fired at 1480℃,when the Sws addition is 10%,the cold compressive strength is 22 MPa;when the Sws addition is 20%,the thermal conductivity is 0.368 W·m^(-1)·K^(-1)(350℃);(2)nano-silica in the silica sol reacts with MgO in the matrix to form forsterite,which encapsulates the pores volatilized from the walnut shell powder and forms closed pores. 展开更多
关键词 foaming method ignition loss method walnut shell powder impregnated with silica sol magnesia porous aggregates magnesia insulation materials
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring 被引量:1
18
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Technology status and development of mineral wool made of blast furnace slag 被引量:4
19
作者 XIAO Yongli,LI Yongqian and LIU Yin Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期137-,共1页
Under the trend of low-carbon economy,the technique of producing mineral wool insulation material from molten blast furnace slag are of great significance both to Insulation materials industry and metallurgical indust... Under the trend of low-carbon economy,the technique of producing mineral wool insulation material from molten blast furnace slag are of great significance both to Insulation materials industry and metallurgical industry on the aspects of energy conservation and emissions reduction.This paper presents characteristics and use of mineral wool made of blast furnace slag,and also introduces mineral wool production process and key techniques.It also put forward a number of issues need to be addressed in the process.The inherent mechanism affecting the performance of the of mineral wool is analyzed.And it points out the target and future direction of R & D in Baoshan Iron and Steel in mineral wool technology field. 展开更多
关键词 blast furnace slag mineral wool insulation material
下载PDF
Progress on the Structures and Functions of Aerogels 被引量:1
20
作者 穆若郡 庞杰 +4 位作者 袁毅 谭小丹 王敏 陈涵 Wei-Yin Chiang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第3期487-497,共11页
Aerogel materials possess a wide variety of excellent functions,hence a striking number of applications have developed for them.In this paper,we present a historic review of the aerogel materials,showing the main conc... Aerogel materials possess a wide variety of excellent functions,hence a striking number of applications have developed for them.In this paper,we present a historic review of the aerogel materials,showing the main concepts,research methods,important scientific problems,formation mechanism,structure characteristics and essence of aerogel.More applications are evolving as the scientific and engineering community,which becomes familiar with the unusual and exceptional physical properties of aerogels.In addition,we also discuss the huge development potential and prospect of polysaccharide aerogels as the research trend in the future. 展开更多
关键词 aerogel electrospinning ultralight nanofiber material silicon dioxide insulation adsorption environmental protection optical polysaccharide konjac glucomannan
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部