AIM: To investigate the effects of blockade of insulin receptor substrate-1(IRS-1) on the bio-function of tube formation of human choroidal endothelial cells(HCECs).METHODS: Quantitative reverse transcriptionpolymeras...AIM: To investigate the effects of blockade of insulin receptor substrate-1(IRS-1) on the bio-function of tube formation of human choroidal endothelial cells(HCECs).METHODS: Quantitative reverse transcriptionpolymerase chain reaction(RT-PCR) and Western blot were performed to determine the expression level of IRS-1 and phospho-IRS-1 in HCECs. Tube formation of HCECs was analyzed using three dimensional in vitro Matrigel assay with or without IRS-1 blockage via IRS-1 inhibitor(GS-101) and vascular endothelial growth factor receptor 2(VEGFR2) inhibitor. In addition, cell counting kit(CCK)-8 and Transwell migration assay were exerted to analyze the effects of blockade of IRS-1 on the bio-function of proliferation and migration of HCECs, respectively. The apoptosis of HCECs was examined using flow cytometry(FCM).RESULTS: RT-PCR and Western blot revealed that IRS-1 phospho-IRS-1 were expressed in HCECs and the expression level was enhanced by stimulation of VEGF-A. The number of tube formation was decreased significantly in GS-101 treated groups compared to phosphate buffered saline(PBS) treated control groups. Furthermore, both cell proliferation and migration of HCECs were decreased in the presence of GS-101. FCM analysis showed that the apoptosis of HCECs was enhanced when the cells were treated with GS-101. Western blot also showed that the expression level of cleaved-caspase 3 in GS-101 treated group was higher than that in control group.CONCLUSION: Blockade of IRS-1 can inhibit tube formation of HCECs through reducing cell proliferation and migration and promoting cell apoptosis.展开更多
Background MicroRNAs (miRNAs) contribute to tumorigenesis by acting as either oncogenes or tumor suppressor genes. In this study, we investigated the role of miR-145 in the pathogenesis of uveal melanoma. Methods Ex...Background MicroRNAs (miRNAs) contribute to tumorigenesis by acting as either oncogenes or tumor suppressor genes. In this study, we investigated the role of miR-145 in the pathogenesis of uveal melanoma. Methods Expression profiles of miRNAs in uveal melanoma were performed using Agilent miRNA array. Quantitative real-time polymerase chain reaction was used to screen the expression levels of miR-145 in normal uveal tissue, uveal melanoma tissue, and uveal melanoma cell lines. Lenti-virus expression system was used to construct MUM-2B and OCM-1 cell lines with stable overexpression of miR-145. Cell proliferation, cell cycle, and cell apoptosis of these miR-145 overexpression cell lines were examined by MTT assay and flow cytometry respectively. The target genes of miR-145 were predicted by bioinformatics and confirmed using a luciferase reporter assay. The expression of insulin-like growth factor-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1) proteins was determined by Western blotting analysis. IRS- 1 was knocked down in OCM-1 cells. TUNEL, BrdU, and flow cytometry assay were performed in IRS-1 knocked down OCM-1 cell lines to analyze its function. Results Forty-seven miRNAs were up regulated in uveal melanoma and 61 were down regulated, miR-145 expression was significantly lower in uveal melanoma sample and the cell lines were compared with normal uveal sample. Overexpression of miR-145 suppressed cell proliferation by blocking the G1 phase entering S phase in uveal melanoma cells, and promoted uveal melanoma cell apoptosis. IRS-1 was identified as a potential target of miR-145 by dual luciferase reporter assay. Knocking down of IRS-1 had similar effect as overexpression of miR-145. Conclusion miR-145 might act as a tumor suppressor in uveal melanoma, and downregulation of the target IRS-1 might be a potential mechanism.展开更多
Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insu...Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels.However,this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells.Recent research has explored the potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)as a novel intervention to modify the disease course and delay the onset of T1D.GLP-1RAs are medications initially developed for treating type 2 diabetes.They exert their effects by enhancing glucose-dependent insulin secretion,suppressing glucagon secretion,and slowing gastric emptying.Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D.This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D,possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells.This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification,which should open new avenues for preventing and treating T1D,improving the quality of life and long-term outcomes for individuals at risk of T1D.展开更多
The maintenance of appropriate glycemic control is important for the prevention of diabetic complications in people with type 2 diabetes(T2D). Numerous oral antidiabetic drugs are now clinically available, but in part...The maintenance of appropriate glycemic control is important for the prevention of diabetic complications in people with type 2 diabetes(T2D). Numerous oral antidiabetic drugs are now clinically available, but in particular, the introduction of injection regimens using insulin and/or glucagon-like peptide-1 receptor agonist(GLP-1RA)s represents promising step-up options for oral antidiabetic drug treatment. The recently licensed fixed-ratio combination(FRC) products,which comprise basal insulin and a GLP-1RA, have potent anti-hyperglycemic effects and reduce the undesirable side-effects of each component, such as body weight gain, hypoglycemia, and gastrointestinal symptoms. Two FRCs-insulin degludec/Liraglutide and insulin glargine/Lixisenatide-are now clinically available and, to date, several phase Ⅱ/Ⅲ trials have been conducted in particular groups of subjects with T2D. However, their utility in real-world clinical settings is of interest for most clinicians. Recently reported real-world clinical trials of these two FRCs in various situations have demonstrated their efficacy regarding glycemic control and the quality of life of people with T2D. Their long-term safety and efficacy require confirmation, but a treatment strategy that includes an FRC may be compatible with the concept of “well-balanced” therapy in certain groups of patients with T2D who have inadequate glycemic control.展开更多
BACKGROUND Despite effective prevention and screening methods,the incidence and mortality rates associated with colorectal cancer(CRC)are still high.Insulin receptor substrate 1(IRS-1),a signaling molecule involved in...BACKGROUND Despite effective prevention and screening methods,the incidence and mortality rates associated with colorectal cancer(CRC)are still high.Insulin receptor substrate 1(IRS-1),a signaling molecule involved in cell proliferation,survival and metabolic responses has been implicated in carcinogenic processes in various cellular and animal models.However,the role of IRS-1 in CRC biology and its value as a clinical CRC biomarker has not been well defined.AIM To evaluate if and how IRS-1 expression and its associations with the apoptotic and proliferation tumor markers,Bax,Bcl-xL and Ki-67 are related to clinicopathological features in human CRC.METHODS The expression of IRS-1,Bax,Bcl-xL and Ki-67 proteins was assessed in tissue samples obtained from 127 patients with primary CRC using immunohistochemical methods.The assays were performed using specific antibodies against IRS-1,Bax,Bcl-xL,Ki-67.The associations between the expression of IRS-1,Bax,Bcl-xL,Ki-67 were analyzed in relation to clinicopathological parameters,i.e.,patient age,sex,primary localization of tumor,histopathological type,grading,staging and lymph node spread.Correlations between variables were examined by Spearman rank correlation test and Fisher exact test with a level of significance at P<0.05.RESULTS Immunohistochemical analysis of 127 CRC tissue samples revealed weak cytoplasmatic staining for IRS-1 in 66 CRC sections and strong cytoplasmatic staining in 61 cases.IRS-1 expression at any level in primary CRC was associated with tumor grade(69%in moderately differentiated tumors,G2 vs 31%in poorly differentiated tumors,G3)and with histological type(81.9%in adenocarcinoma vs 18.1%in adenocarcinoma with mucosal component cases).Strong IRS-1 positivity was observed more frequently in adenocarcinoma cases(95.1%)and in moderately differentiated tumors(85.2%).We also found statistically significant correlations between expression of IRS-1 and both Bax and Bcl-xL in all CRC cases examined.The relationships between studied proteins were related to clinicopathological parameters of CRC.No significant correlation between the expression of IRS-1 and proliferation marker Ki-67,excluding early stage tumors,where the correlation was positive and on a high level(P=0.043,r=0.723).CONCLUSION This study suggests that IRS-1 is co-expressed with both pro-and antiapoptotic markers and all these proteins are more prevalent in more differentiated CRC than in poorly differentiated CRC.展开更多
Objective:To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A(PPARGC1A) of rat offspring with gestational diabetes m...Objective:To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A(PPARGC1A) of rat offspring with gestational diabetes mellitus(GDM).Methods:A total of 45 pregnant rats received the intraperitoneal injection of streptozotocin to establish the pregnant rat model of GDM.A total of 21 pregnant rats with GDM were randomly divided into three groups,with 7ruts in each group,namely the insulin group,metformin group and control group.Rats in the insulin group received the abdominal subcutaneous injection of 1 mL/kg recombinant insulin glargine at 18:00 every day.Rats in the metformin group received the intragastric infusion of metformin hydrochloride at 18:00 every day,with the first dose of 300 mg/kg.The doses of two groups were adjusted every 3 d to maintain the blood glucose level at 2.65-7.62 mmol/L.Rats in the control group received the intragastric infusion of 1 mL normal saline at 18:00 every day.After the natural delivery of pregnant rats.10 offspring rats were randomly selected from each group.At birth,4 wk and 8 wk after the birth of offspring rats,the weight of offspring rats was measured.The blood glucose level of offspring rats was measured at 4wk and 8 wk,while the level of serum insulin,triglyceride and leptin was measured at 8 wk.Results:The weight of offspring rats at birth in the insulin group and metformin group was significantly lower than the one in the control group(P<0.05),and there was no significant difference at 4 wk and 8 wk among three groups(P>0.05).The fasting blood glucose and random blood glucose in the insulin group and metformin group at 4 wk and 8 wk were all significantly lower than ones in the control group(P<0.05);there was no significant difference between the insulin group and metformin group(P>0.05).The expression of PPARGC1 A mRNA in the insulin group and metformin group was significantly higher and the methylation level of PPARGC1 A was significantly lower than the one in the control group(P<0.05),but there was no significant difference between the insulin group and metformin group(P>0.05).Insulin and leptin at 8 wk in the insulin group and metformin group were significantly higher,while triglyceride was significantly lower than the one in the control group(P<0.05);triglyceride level of rats in the insulin group was significantly higher than the one in the metformin group(P<0.05).There was no significant difference in insulin and leptin level of offspring rats between the insulin group and metformin group(P>0.05).Conclusions:GDM can induce the methylation of PPARGC1 A of offspring rats to reduce the expression of PPARGC1 A mRNA and then cause the disorder of glycolipid metabolism when the offspring rats grow up;the insulin or metformin in the treatment of pregnant rats with GDM can reduce the methylation level of PPARGC1 A and thus improve the abnormal glycolipid metabolism of offspring rats.展开更多
Patients with Parkinson's disease(PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic polypeptide(GIP), can re-sensiti...Patients with Parkinson's disease(PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic polypeptide(GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular coagonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine(6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1(IRS-1)/alpha serine/threonine-protein kinase(Akt)/c AMP response element-binding protein(CREB) pathway. We also found that DA-CH5(10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines(tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was upregulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDAunilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.展开更多
There is a pathophysiological correlation between arterial hypertension and diabetes mellitus, established since the pre-diabetic state in the entity known as insulin resistance. It is known that high concentrations o...There is a pathophysiological correlation between arterial hypertension and diabetes mellitus, established since the pre-diabetic state in the entity known as insulin resistance. It is known that high concentrations of angiotensin-Ⅱ enable chronic activation of the AT1 receptor, promoting sustained vasoconstriction and the consequent development of high blood pressure. Furthermore, the chronic activation of the AT1 receptor has been associated with the development of insulin resistance. From a molecular outlook, the AT1 receptor signaling pathway can activate the JNK kinase. Once activated, this kinase can block the insulin signaling pathway, favoring the resistance to this hormone. In accordance with the previously mentioned mechanisms, the negative regulation of the AT1receptor could have beneficial effects in treating metabolic syndrome and type 2diabetes mellitus. This review explains the clinical correlation of the metabolic response that diabetic patients present when receiving negatively regulatory drugs of the AT1 receptor.展开更多
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is...Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.展开更多
BACKGROUND:Sulfonylurea receptor 1(SUR1)and multidrug resistance protein 1(MRP1)are two prominent members of multidrug resistance proteins associated with insulin secretion. The aims of this study were to investigate ...BACKGROUND:Sulfonylurea receptor 1(SUR1)and multidrug resistance protein 1(MRP1)are two prominent members of multidrug resistance proteins associated with insulin secretion. The aims of this study were to investigate their expression in insulinomas and their sole and synergistic effects in modulating abnormal insulin secretion. METHODS:Fasting glucose,insulin and C-peptide were measured in 11 insulinoma patients and 11 healthy controls. Prolonged oral glucose tolerance tests were performed in 6 insulinoma patients.Insulin content,SUR1 and MRP1 were detected in 11 insulinoma patients by immunohistochemistry. SUR1 and MRP1 were also detected in 6 insulinoma patients by immunofluorescence. RESULTS:Insulinoma patients presented the typical demons-trations of Whipple’s triad.Fasting glucose of each insulinoma patient was lower than 2.8 mmol/L,and simultaneous insulin and C-peptide were increased in insulinoma patients. Prolonged oral glucose tolerance tests showed that insulin secretion in insulinoma patients were also stimulated by high glucose.Immunohistochemistry and immunofluorescence staining showed that SUR1 increased,but MRP1 decreased in insulinoma compared with the adjacent islets. CONCLUSIONS:The hypersecretion of insulin in insulinomas might be,at least partially,due to the enrichment of SUR1. In contrast,MRP1,which is down-regulated in insulinomas, might reflect a negative feedback in insulin secretion.展开更多
目的研究替米沙坦促进大鼠胰岛素分泌作用相关的信号通路。方法(1)分离成年Wistar大鼠胰腺获得胰岛和胰岛细胞,通过胰岛素分泌实验观察药物对胰岛素分泌的影响,通过钙成像实验和全细胞膜片钳技术观察药物对β细胞内Ca^(2+)浓度的变化和...目的研究替米沙坦促进大鼠胰岛素分泌作用相关的信号通路。方法(1)分离成年Wistar大鼠胰腺获得胰岛和胰岛细胞,通过胰岛素分泌实验观察药物对胰岛素分泌的影响,通过钙成像实验和全细胞膜片钳技术观察药物对β细胞内Ca^(2+)浓度的变化和对离子通道的作用。(2)使用过表达电压门控性钾(voltage-gated potassium channel,Kv)通道2.1亚型(Kv2.1)的慢病毒转染中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞构建CHO-Kv2.1细胞系,使用膜片钳技术观察替米沙坦对Kv2.1通道的直接作用。结果缬沙坦和厄贝沙坦无类似替米沙坦的高糖浓度下促胰岛素分泌、升高β细胞内Ca^(2+)浓度和抑制β细胞的Kv通道等作用。过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptorγ,PPARγ)阻断剂GW9662亦未阻断替米沙坦的上述作用。而替米沙坦可以浓度依赖性地抑制CHO-Kv2.1细胞的Kv2.1通道电流。结论替米沙坦的促胰岛素分泌作用可能与血管紧张素Ⅱ-1型(angiotensin II type 1,AT-1)受体和PPARγ无关,但至少与对Kv2.1通道的直接抑制作用有关。展开更多
Summary: The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling com- ponents have been increasingly recognized to drive the development of malignancies, including non-small cell lung c...Summary: The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling com- ponents have been increasingly recognized to drive the development of malignancies, including non-small cell lung cancer (NSCLC). This study aimed to investigate the effects of IGF-1R and its in- hibitor, AG1024, on the progression of lung cancer. Tissue microarray and immunohistochemistry were employed to detect the expressions of IGF-1 and IGF-1R in NSCLC tissues (n=198). Western blotting was used to determine the expressions oflGF-1 and phosphorylated IGF-1R (p-IGF-1R) in A549 human lung carcinoma cells, and MTT assay to measure cell proliferation. Additionally, the expressions of IGF-1, p-IGF-1R and IGF-1R in a mouse model of lung cancer were detected by Western blotting and real-time fluorescence quantitative polymerase chain reaction (FQ-PCR), respectively. The results showed that IGF-1 and IGF-1R were overexpressed in NSCLC tissues. The expression levels of IGF-1 and p-IGF-1R were significantly increased in A549 cells treated with IGF-1 as compared to those treated with IGF-1 +AG 1024 or untreated cells. In the presence of IGF-1, the proliferation of A549 cells was significantly increased. The progression of lung cancer in mice treated with IGF-1 was significantly increased as compared to the group treated with IGF-l+AG1024 or the control group, with the same trend mirrored in IGF-1/p-IGF-1R/IGF-1R at the protein and/or mRNA levels. It was concluded that IGF- 1 and IGF inhibitor AG 1024 promotes lung cancer progression.展开更多
基金Supported by the National Natural Science Foundation in China(No.81671641 No.81970830+6 种基金 No.31600736)Suzhou Municipal Natural Science Foundation(No.SYS201745)Soochow University Doctoral Academic Talents Program(No.5832001313)Jiangsu Provincial Medical Youth Talent(No.QNRC2016718)Jiangsu Provincial Medical Innovation Team(No.CXTDA2017039)Jiangsu Provincial Natural Science Foundation(No.BK20151208)the Soochow Scholar Project of Soochow University(No.R5122001)
文摘AIM: To investigate the effects of blockade of insulin receptor substrate-1(IRS-1) on the bio-function of tube formation of human choroidal endothelial cells(HCECs).METHODS: Quantitative reverse transcriptionpolymerase chain reaction(RT-PCR) and Western blot were performed to determine the expression level of IRS-1 and phospho-IRS-1 in HCECs. Tube formation of HCECs was analyzed using three dimensional in vitro Matrigel assay with or without IRS-1 blockage via IRS-1 inhibitor(GS-101) and vascular endothelial growth factor receptor 2(VEGFR2) inhibitor. In addition, cell counting kit(CCK)-8 and Transwell migration assay were exerted to analyze the effects of blockade of IRS-1 on the bio-function of proliferation and migration of HCECs, respectively. The apoptosis of HCECs was examined using flow cytometry(FCM).RESULTS: RT-PCR and Western blot revealed that IRS-1 phospho-IRS-1 were expressed in HCECs and the expression level was enhanced by stimulation of VEGF-A. The number of tube formation was decreased significantly in GS-101 treated groups compared to phosphate buffered saline(PBS) treated control groups. Furthermore, both cell proliferation and migration of HCECs were decreased in the presence of GS-101. FCM analysis showed that the apoptosis of HCECs was enhanced when the cells were treated with GS-101. Western blot also showed that the expression level of cleaved-caspase 3 in GS-101 treated group was higher than that in control group.CONCLUSION: Blockade of IRS-1 can inhibit tube formation of HCECs through reducing cell proliferation and migration and promoting cell apoptosis.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81272981) and Natural Sciences Fundation of Beijing, China (No. 7112031).
文摘Background MicroRNAs (miRNAs) contribute to tumorigenesis by acting as either oncogenes or tumor suppressor genes. In this study, we investigated the role of miR-145 in the pathogenesis of uveal melanoma. Methods Expression profiles of miRNAs in uveal melanoma were performed using Agilent miRNA array. Quantitative real-time polymerase chain reaction was used to screen the expression levels of miR-145 in normal uveal tissue, uveal melanoma tissue, and uveal melanoma cell lines. Lenti-virus expression system was used to construct MUM-2B and OCM-1 cell lines with stable overexpression of miR-145. Cell proliferation, cell cycle, and cell apoptosis of these miR-145 overexpression cell lines were examined by MTT assay and flow cytometry respectively. The target genes of miR-145 were predicted by bioinformatics and confirmed using a luciferase reporter assay. The expression of insulin-like growth factor-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1) proteins was determined by Western blotting analysis. IRS- 1 was knocked down in OCM-1 cells. TUNEL, BrdU, and flow cytometry assay were performed in IRS-1 knocked down OCM-1 cell lines to analyze its function. Results Forty-seven miRNAs were up regulated in uveal melanoma and 61 were down regulated, miR-145 expression was significantly lower in uveal melanoma sample and the cell lines were compared with normal uveal sample. Overexpression of miR-145 suppressed cell proliferation by blocking the G1 phase entering S phase in uveal melanoma cells, and promoted uveal melanoma cell apoptosis. IRS-1 was identified as a potential target of miR-145 by dual luciferase reporter assay. Knocking down of IRS-1 had similar effect as overexpression of miR-145. Conclusion miR-145 might act as a tumor suppressor in uveal melanoma, and downregulation of the target IRS-1 might be a potential mechanism.
文摘Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels.However,this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells.Recent research has explored the potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)as a novel intervention to modify the disease course and delay the onset of T1D.GLP-1RAs are medications initially developed for treating type 2 diabetes.They exert their effects by enhancing glucose-dependent insulin secretion,suppressing glucagon secretion,and slowing gastric emptying.Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D.This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D,possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells.This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification,which should open new avenues for preventing and treating T1D,improving the quality of life and long-term outcomes for individuals at risk of T1D.
文摘The maintenance of appropriate glycemic control is important for the prevention of diabetic complications in people with type 2 diabetes(T2D). Numerous oral antidiabetic drugs are now clinically available, but in particular, the introduction of injection regimens using insulin and/or glucagon-like peptide-1 receptor agonist(GLP-1RA)s represents promising step-up options for oral antidiabetic drug treatment. The recently licensed fixed-ratio combination(FRC) products,which comprise basal insulin and a GLP-1RA, have potent anti-hyperglycemic effects and reduce the undesirable side-effects of each component, such as body weight gain, hypoglycemia, and gastrointestinal symptoms. Two FRCs-insulin degludec/Liraglutide and insulin glargine/Lixisenatide-are now clinically available and, to date, several phase Ⅱ/Ⅲ trials have been conducted in particular groups of subjects with T2D. However, their utility in real-world clinical settings is of interest for most clinicians. Recently reported real-world clinical trials of these two FRCs in various situations have demonstrated their efficacy regarding glycemic control and the quality of life of people with T2D. Their long-term safety and efficacy require confirmation, but a treatment strategy that includes an FRC may be compatible with the concept of “well-balanced” therapy in certain groups of patients with T2D who have inadequate glycemic control.
文摘BACKGROUND Despite effective prevention and screening methods,the incidence and mortality rates associated with colorectal cancer(CRC)are still high.Insulin receptor substrate 1(IRS-1),a signaling molecule involved in cell proliferation,survival and metabolic responses has been implicated in carcinogenic processes in various cellular and animal models.However,the role of IRS-1 in CRC biology and its value as a clinical CRC biomarker has not been well defined.AIM To evaluate if and how IRS-1 expression and its associations with the apoptotic and proliferation tumor markers,Bax,Bcl-xL and Ki-67 are related to clinicopathological features in human CRC.METHODS The expression of IRS-1,Bax,Bcl-xL and Ki-67 proteins was assessed in tissue samples obtained from 127 patients with primary CRC using immunohistochemical methods.The assays were performed using specific antibodies against IRS-1,Bax,Bcl-xL,Ki-67.The associations between the expression of IRS-1,Bax,Bcl-xL,Ki-67 were analyzed in relation to clinicopathological parameters,i.e.,patient age,sex,primary localization of tumor,histopathological type,grading,staging and lymph node spread.Correlations between variables were examined by Spearman rank correlation test and Fisher exact test with a level of significance at P<0.05.RESULTS Immunohistochemical analysis of 127 CRC tissue samples revealed weak cytoplasmatic staining for IRS-1 in 66 CRC sections and strong cytoplasmatic staining in 61 cases.IRS-1 expression at any level in primary CRC was associated with tumor grade(69%in moderately differentiated tumors,G2 vs 31%in poorly differentiated tumors,G3)and with histological type(81.9%in adenocarcinoma vs 18.1%in adenocarcinoma with mucosal component cases).Strong IRS-1 positivity was observed more frequently in adenocarcinoma cases(95.1%)and in moderately differentiated tumors(85.2%).We also found statistically significant correlations between expression of IRS-1 and both Bax and Bcl-xL in all CRC cases examined.The relationships between studied proteins were related to clinicopathological parameters of CRC.No significant correlation between the expression of IRS-1 and proliferation marker Ki-67,excluding early stage tumors,where the correlation was positive and on a high level(P=0.043,r=0.723).CONCLUSION This study suggests that IRS-1 is co-expressed with both pro-and antiapoptotic markers and all these proteins are more prevalent in more differentiated CRC than in poorly differentiated CRC.
基金supported by Shandong Natural Science Fund(Y2008c170)
文摘Objective:To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A(PPARGC1A) of rat offspring with gestational diabetes mellitus(GDM).Methods:A total of 45 pregnant rats received the intraperitoneal injection of streptozotocin to establish the pregnant rat model of GDM.A total of 21 pregnant rats with GDM were randomly divided into three groups,with 7ruts in each group,namely the insulin group,metformin group and control group.Rats in the insulin group received the abdominal subcutaneous injection of 1 mL/kg recombinant insulin glargine at 18:00 every day.Rats in the metformin group received the intragastric infusion of metformin hydrochloride at 18:00 every day,with the first dose of 300 mg/kg.The doses of two groups were adjusted every 3 d to maintain the blood glucose level at 2.65-7.62 mmol/L.Rats in the control group received the intragastric infusion of 1 mL normal saline at 18:00 every day.After the natural delivery of pregnant rats.10 offspring rats were randomly selected from each group.At birth,4 wk and 8 wk after the birth of offspring rats,the weight of offspring rats was measured.The blood glucose level of offspring rats was measured at 4wk and 8 wk,while the level of serum insulin,triglyceride and leptin was measured at 8 wk.Results:The weight of offspring rats at birth in the insulin group and metformin group was significantly lower than the one in the control group(P<0.05),and there was no significant difference at 4 wk and 8 wk among three groups(P>0.05).The fasting blood glucose and random blood glucose in the insulin group and metformin group at 4 wk and 8 wk were all significantly lower than ones in the control group(P<0.05);there was no significant difference between the insulin group and metformin group(P>0.05).The expression of PPARGC1 A mRNA in the insulin group and metformin group was significantly higher and the methylation level of PPARGC1 A was significantly lower than the one in the control group(P<0.05),but there was no significant difference between the insulin group and metformin group(P>0.05).Insulin and leptin at 8 wk in the insulin group and metformin group were significantly higher,while triglyceride was significantly lower than the one in the control group(P<0.05);triglyceride level of rats in the insulin group was significantly higher than the one in the metformin group(P<0.05).There was no significant difference in insulin and leptin level of offspring rats between the insulin group and metformin group(P>0.05).Conclusions:GDM can induce the methylation of PPARGC1 A of offspring rats to reduce the expression of PPARGC1 A mRNA and then cause the disorder of glycolipid metabolism when the offspring rats grow up;the insulin or metformin in the treatment of pregnant rats with GDM can reduce the methylation level of PPARGC1 A and thus improve the abnormal glycolipid metabolism of offspring rats.
基金supported by the Doctoral Start-Up Foundation of Shanxi Province of China,No. SD1817 (to QQJ)。
文摘Patients with Parkinson's disease(PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic polypeptide(GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular coagonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine(6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1(IRS-1)/alpha serine/threonine-protein kinase(Akt)/c AMP response element-binding protein(CREB) pathway. We also found that DA-CH5(10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines(tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was upregulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDAunilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.
文摘There is a pathophysiological correlation between arterial hypertension and diabetes mellitus, established since the pre-diabetic state in the entity known as insulin resistance. It is known that high concentrations of angiotensin-Ⅱ enable chronic activation of the AT1 receptor, promoting sustained vasoconstriction and the consequent development of high blood pressure. Furthermore, the chronic activation of the AT1 receptor has been associated with the development of insulin resistance. From a molecular outlook, the AT1 receptor signaling pathway can activate the JNK kinase. Once activated, this kinase can block the insulin signaling pathway, favoring the resistance to this hormone. In accordance with the previously mentioned mechanisms, the negative regulation of the AT1receptor could have beneficial effects in treating metabolic syndrome and type 2diabetes mellitus. This review explains the clinical correlation of the metabolic response that diabetic patients present when receiving negatively regulatory drugs of the AT1 receptor.
基金supported by the National Natural Science Foundation of China[31872674]the Jilin Talent Development Foundation Grant[20200301018RQ]the Fundamental Research Funds for the Central Universities[CGZH202206].
文摘Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.
文摘BACKGROUND:Sulfonylurea receptor 1(SUR1)and multidrug resistance protein 1(MRP1)are two prominent members of multidrug resistance proteins associated with insulin secretion. The aims of this study were to investigate their expression in insulinomas and their sole and synergistic effects in modulating abnormal insulin secretion. METHODS:Fasting glucose,insulin and C-peptide were measured in 11 insulinoma patients and 11 healthy controls. Prolonged oral glucose tolerance tests were performed in 6 insulinoma patients.Insulin content,SUR1 and MRP1 were detected in 11 insulinoma patients by immunohistochemistry. SUR1 and MRP1 were also detected in 6 insulinoma patients by immunofluorescence. RESULTS:Insulinoma patients presented the typical demons-trations of Whipple’s triad.Fasting glucose of each insulinoma patient was lower than 2.8 mmol/L,and simultaneous insulin and C-peptide were increased in insulinoma patients. Prolonged oral glucose tolerance tests showed that insulin secretion in insulinoma patients were also stimulated by high glucose.Immunohistochemistry and immunofluorescence staining showed that SUR1 increased,but MRP1 decreased in insulinoma compared with the adjacent islets. CONCLUSIONS:The hypersecretion of insulin in insulinomas might be,at least partially,due to the enrichment of SUR1. In contrast,MRP1,which is down-regulated in insulinomas, might reflect a negative feedback in insulin secretion.
文摘目的研究替米沙坦促进大鼠胰岛素分泌作用相关的信号通路。方法(1)分离成年Wistar大鼠胰腺获得胰岛和胰岛细胞,通过胰岛素分泌实验观察药物对胰岛素分泌的影响,通过钙成像实验和全细胞膜片钳技术观察药物对β细胞内Ca^(2+)浓度的变化和对离子通道的作用。(2)使用过表达电压门控性钾(voltage-gated potassium channel,Kv)通道2.1亚型(Kv2.1)的慢病毒转染中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞构建CHO-Kv2.1细胞系,使用膜片钳技术观察替米沙坦对Kv2.1通道的直接作用。结果缬沙坦和厄贝沙坦无类似替米沙坦的高糖浓度下促胰岛素分泌、升高β细胞内Ca^(2+)浓度和抑制β细胞的Kv通道等作用。过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptorγ,PPARγ)阻断剂GW9662亦未阻断替米沙坦的上述作用。而替米沙坦可以浓度依赖性地抑制CHO-Kv2.1细胞的Kv2.1通道电流。结论替米沙坦的促胰岛素分泌作用可能与血管紧张素Ⅱ-1型(angiotensin II type 1,AT-1)受体和PPARγ无关,但至少与对Kv2.1通道的直接抑制作用有关。
基金supported by grants from the Young Science Foundation of Wuhan Central Hospital(No.YQ15A01)the National Natural Science Foundation of China(No.81501985and No.81272590)
文摘Summary: The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling com- ponents have been increasingly recognized to drive the development of malignancies, including non-small cell lung cancer (NSCLC). This study aimed to investigate the effects of IGF-1R and its in- hibitor, AG1024, on the progression of lung cancer. Tissue microarray and immunohistochemistry were employed to detect the expressions of IGF-1 and IGF-1R in NSCLC tissues (n=198). Western blotting was used to determine the expressions oflGF-1 and phosphorylated IGF-1R (p-IGF-1R) in A549 human lung carcinoma cells, and MTT assay to measure cell proliferation. Additionally, the expressions of IGF-1, p-IGF-1R and IGF-1R in a mouse model of lung cancer were detected by Western blotting and real-time fluorescence quantitative polymerase chain reaction (FQ-PCR), respectively. The results showed that IGF-1 and IGF-1R were overexpressed in NSCLC tissues. The expression levels of IGF-1 and p-IGF-1R were significantly increased in A549 cells treated with IGF-1 as compared to those treated with IGF-1 +AG 1024 or untreated cells. In the presence of IGF-1, the proliferation of A549 cells was significantly increased. The progression of lung cancer in mice treated with IGF-1 was significantly increased as compared to the group treated with IGF-l+AG1024 or the control group, with the same trend mirrored in IGF-1/p-IGF-1R/IGF-1R at the protein and/or mRNA levels. It was concluded that IGF- 1 and IGF inhibitor AG 1024 promotes lung cancer progression.