In this paper, we introduce the integration of algebroidal functions on Riemann surfaces for the first time. Some properties of integration are obtained. By giving the defi- nition of residues and integral function el...In this paper, we introduce the integration of algebroidal functions on Riemann surfaces for the first time. Some properties of integration are obtained. By giving the defi- nition of residues and integral function element, we obtain the condition that the integral is independent of path. At last, we prove that the integral of an irreducible algebroidal function is also an irreducible algebroidal function if all the residues at critical points are zeros.展开更多
The steady partially cavitating flow around two-dimensional hydrofoils war simulated numerically by the low-order potential-based boundary integration method. The cavity shape and length are determined for given cavit...The steady partially cavitating flow around two-dimensional hydrofoils war simulated numerically by the low-order potential-based boundary integration method. The cavity shape and length are determined for given cavitating numbers in the course of iteration by satisfying the kinematic and dynamic boundary conditions. The re-entrant jet model and the pressure-recovery close model are adopted to replace the high turbulent and two-phase wake forming behind the cavity. The results are compared with the other published numerical ones.展开更多
In this paper a general matrix decomposition scheme as well as an element-by-clement relaxation algorithm combined with step-by -step integration method is presented for transient dynamic problems thus the finite elem...In this paper a general matrix decomposition scheme as well as an element-by-clement relaxation algorithm combined with step-by -step integration method is presented for transient dynamic problems thus the finite element method can be fromforming global stiffness matrix global mass matrix as well as solyin large scale sparse equations Theory analysis and numerical results show that the presented matrix decomposition scheme is the optimal one The presented algoithm has else physicalmeaning and can be busily applied to finite element codes展开更多
Vibrio cholerae(V. cholerae) genome is equipped with a number of integrative mobile genetic element(IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen...Vibrio cholerae(V. cholerae) genome is equipped with a number of integrative mobile genetic element(IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen to survive in changing environmental conditions. Metagenomic analyses of clinical and environmental V. cholerae isolates revealed that dimer resolution sites(dif) harbor several structurally and functionally distinct IMGEs. All IMGEs present in the dif region exploit chromosomally encoded tyrosine recombinases, Xer C and Xer D, for integration. Integration takes place due to site-specific recombination between two specific DNA sequences; chromosomal sequence is called att B and IMGEs sequence is called att P. Different IMGEs present in the att P region have different attP structure but all of them are recognized by Xer C and Xer D enzymes and mediate either reversible or irreversible integration. Cholera toxin phage(CTXΦ), a lysogenic filamentous phage carrying the cholera toxin genes ctx AB, deserves special attention because it provides V. cholerae the crucial toxin and is always present in the dif region of all epidemic cholera isolates. Therefore, understanding the mechanisms of integration and dissemination of CTXΦ, genetic and ecological factors which support CTXΦ integration as well as production of virion from chromosomally integrated phage genome and interactions of CTXΦ with other genetic elements present in the genomes of V. cholerae is important for learning more about the biology of cholera pathogen.展开更多
A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant sto...A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant storage module is designed. It utilizes the high hydrostatic pressure in deep ocean to drive water into the module to generate negative pressure for bucket suction. This work aims to further approve the feasibility of the concept design in the aspect of penetration installation and the uplift force in-place. Seepage is generated during suction penetration, and can have both positive and negative effects on penetration process. To study the effect of seepage on the penetration process of the integrated suction foundation, finite element analysis(FEA) is carried out in this work. In particular, an improved methodology to calculate the penetration resistance is proposed for the integrated suction foundation with respect to the reduction factor of penetration resistance. The maximum allowable negative pressure during suction penetration is calculated with the critical hydraulic gradient method through FEA. The simulation results of the penetration process show that the integrated suction foundation can be installed safely. Moreover, the uplift resistance of the integrated suction foundation is calculated and the feasibility of the integrated suction foundation working on-site is verified. In all, the analysis in this work further approves the feasibility of the integrated suction foundation for TLPs in deep ocean applications.展开更多
The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element ...The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element methods) for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART (Projection and Angular & Radial Transformation). The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem, whose degree of freedoms is about 340,000, is implemented successfully. The results show that, the near singularity is primarily introduced by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower.展开更多
In this Letter, we propose a three-dimensional (3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overl...In this Letter, we propose a three-dimensional (3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overlap- ping number of pixels coming from the elemental images by using the subpixel distance based on ray optics between a 3D object and an image sensor. The use of a controllable overlapping number enables us to provide an improved 3D image visualization by controlling the inter-pixel interference within the reconstructed pixels. To find the optimal overlapping number, we simulate the pickup and reconstruction processes and utilize the numerical reconstruction results using a peak signal-to-noise ratio (PSNR) metric. To demonstrate the feasibility of our work in optical experiments, we carry out the preliminary experiments and present the results.展开更多
A distortion correction method for the elemental images of integral imaging(Ⅱ) by utilizing the directional diffuser is demonstrated. In the traditional Ⅱ, the distortion originating from lens aberration wraps ele...A distortion correction method for the elemental images of integral imaging(Ⅱ) by utilizing the directional diffuser is demonstrated. In the traditional Ⅱ, the distortion originating from lens aberration wraps elemental images and degrades the image quality severely. According to the theoretical analysis and experiments, it can be proved that the farther the three-dimensional image is displayed from the lens array, the more serious the distortion is. To analyze the process of eliminating lens distortion, one lens and its corresponding elemental image are separated from the traditional Ⅱ. By introducing the directional diffuser, the aperture stop of the separated optical system changes from the eye's pupil to the lens. In terms of contrast experiments, the distortion of the improved display system is corrected effectively. In the experiment, when the distance between the reconstructed image and lens array is equal to 120 mm, the largest lens distortion is decreased from 46.6% to 3.3%.展开更多
As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer...As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer-oriented element integration algorithm. In this algorithm, the relative dielectric constant and permeability are considered as constants for each the very thin monolayer of CPML, and the element integration of multilayer along the normal direction is substituted by the element integration of m...展开更多
An integrated coupling element considering wheel-rail interface for analyzing the dynamic responses of vehicle-rail-bridge interaction system with a non-uniform continuous bridge is presented. The governing equations ...An integrated coupling element considering wheel-rail interface for analyzing the dynamic responses of vehicle-rail-bridge interaction system with a non-uniform continuous bridge is presented. The governing equations of the interaction system are established first, and the solution procedure and assembly method of the coupling element are demonstrated. Finally, the accuracy, efficiency and function of the integrated coupling element are tested using two numerical examples. The influences of different combinations of rail and bridge element length in the coupling element on the solution are investigated, and the effects of different rail irregularities on the dynamic responses are discussed.展开更多
A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method a...A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method are validated.Computational Fluid Dynamics (CFD),Finite Element Method (FEM) and RIA are used to predict the propeller excited underwater noise of the submarine hull structure.Firstly the propeller and submarine's flows are independently validated,then the self propulsion of the "submarine+propeller" system is simulated via CFD and the balanced point of the system is determined as well as the self propulsion factors.Secondly,the transient response of the "submarine+ propeller" system is analyzed at the balanced point,and the propeller thrust and torque excitations are calculated.Thirdly the thrust and the torque excitations of the propeller are loaded on the submarine,respectively,to calculate the acoustic response,and the sound power and the main peak frequencies are obtained.Results show that:(1) the thrust mainly excites the submarine axial mode and the high frequency area appears at the two conical-type ends,while the torque mainly excites the circumferential mode and the high frequency area appears at the broadside of the cylindrical section,but with rather smaller sound power and radiation efficiency than the former,(2) the main sound source appears at BPF and 2BPF and comes from the harmonic propeller excitations.So,the main attention should be paid on the thrust excitation control for the sound reduction of the propeller excited submarine structure.展开更多
基金supported by the National Natural Science Foundation of China(11501127)Guangdong Natural Science Foundation(2015A030313628)+1 种基金the Training Plan for Outstanding Young Teachers in Higher Education of Guangdong(Yqgdufe1405)the Open Fund of the National Higher Education Quality Monitoring Data Center(Guangzhou)(G1613)
文摘In this paper, we introduce the integration of algebroidal functions on Riemann surfaces for the first time. Some properties of integration are obtained. By giving the defi- nition of residues and integral function element, we obtain the condition that the integral is independent of path. At last, we prove that the integral of an irreducible algebroidal function is also an irreducible algebroidal function if all the residues at critical points are zeros.
文摘The steady partially cavitating flow around two-dimensional hydrofoils war simulated numerically by the low-order potential-based boundary integration method. The cavity shape and length are determined for given cavitating numbers in the course of iteration by satisfying the kinematic and dynamic boundary conditions. The re-entrant jet model and the pressure-recovery close model are adopted to replace the high turbulent and two-phase wake forming behind the cavity. The results are compared with the other published numerical ones.
文摘In this paper a general matrix decomposition scheme as well as an element-by-clement relaxation algorithm combined with step-by -step integration method is presented for transient dynamic problems thus the finite element method can be fromforming global stiffness matrix global mass matrix as well as solyin large scale sparse equations Theory analysis and numerical results show that the presented matrix decomposition scheme is the optimal one The presented algoithm has else physicalmeaning and can be busily applied to finite element codes
基金Supported by Research in the Laboratory of Das B and NairGB is funded in part by Department of Science Technology,No.SB/FT/LS-309/2012Government of India(GOI)and the Department of Biotechnology,No.BT/MB/THSTI/HMC-SFC/2011Research in the Laboratory of Bhadra RK is partly financiallysupported by Council of Scientific and Industrial Research,GOIand Indian Council of Medical Research,GOI
文摘Vibrio cholerae(V. cholerae) genome is equipped with a number of integrative mobile genetic element(IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen to survive in changing environmental conditions. Metagenomic analyses of clinical and environmental V. cholerae isolates revealed that dimer resolution sites(dif) harbor several structurally and functionally distinct IMGEs. All IMGEs present in the dif region exploit chromosomally encoded tyrosine recombinases, Xer C and Xer D, for integration. Integration takes place due to site-specific recombination between two specific DNA sequences; chromosomal sequence is called att B and IMGEs sequence is called att P. Different IMGEs present in the att P region have different attP structure but all of them are recognized by Xer C and Xer D enzymes and mediate either reversible or irreversible integration. Cholera toxin phage(CTXΦ), a lysogenic filamentous phage carrying the cholera toxin genes ctx AB, deserves special attention because it provides V. cholerae the crucial toxin and is always present in the dif region of all epidemic cholera isolates. Therefore, understanding the mechanisms of integration and dissemination of CTXΦ, genetic and ecological factors which support CTXΦ integration as well as production of virion from chromosomally integrated phage genome and interactions of CTXΦ with other genetic elements present in the genomes of V. cholerae is important for learning more about the biology of cholera pathogen.
基金financially supported by the National Basic Key Research Program of China(973 Program,Grant No.2014CB46804)the Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.15JCYBJC21700)
文摘A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant storage module is designed. It utilizes the high hydrostatic pressure in deep ocean to drive water into the module to generate negative pressure for bucket suction. This work aims to further approve the feasibility of the concept design in the aspect of penetration installation and the uplift force in-place. Seepage is generated during suction penetration, and can have both positive and negative effects on penetration process. To study the effect of seepage on the penetration process of the integrated suction foundation, finite element analysis(FEA) is carried out in this work. In particular, an improved methodology to calculate the penetration resistance is proposed for the integrated suction foundation with respect to the reduction factor of penetration resistance. The maximum allowable negative pressure during suction penetration is calculated with the critical hydraulic gradient method through FEA. The simulation results of the penetration process show that the integrated suction foundation can be installed safely. Moreover, the uplift resistance of the integrated suction foundation is calculated and the feasibility of the integrated suction foundation working on-site is verified. In all, the analysis in this work further approves the feasibility of the integrated suction foundation for TLPs in deep ocean applications.
基金supported by the National Natural Science Foundation of China(11304344,11404364)the Project of Hubei Provincial Department of Education(D20141803)+1 种基金the Natural Science Foundation of Hubei Province(2014CFB378)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(BK201604)
文摘The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element methods) for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART (Projection and Angular & Radial Transformation). The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem, whose degree of freedoms is about 340,000, is implemented successfully. The results show that, the near singularity is primarily introduced by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower.
基金supported in part by the IT R&D program of MKE/KEIT.[10041682,Development of high-definition 3D image processing technologies using advanced integral imaging with improved depth range]Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT & Future Planning(No.2011-0030079)
文摘In this Letter, we propose a three-dimensional (3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overlap- ping number of pixels coming from the elemental images by using the subpixel distance based on ray optics between a 3D object and an image sensor. The use of a controllable overlapping number enables us to provide an improved 3D image visualization by controlling the inter-pixel interference within the reconstructed pixels. To find the optimal overlapping number, we simulate the pickup and reconstruction processes and utilize the numerical reconstruction results using a peak signal-to-noise ratio (PSNR) metric. To demonstrate the feasibility of our work in optical experiments, we carry out the preliminary experiments and present the results.
基金supported by the Natural National Science Foundation of China(NSFC)(No.61705014)the Fundamental Research Funds for the Central Universities(No.2016ZX01)+1 种基金the fund of the State Key Laboratory of Information Photonics and Optical CommunicationsThe "863" Program(No.2015AA015902)
文摘A distortion correction method for the elemental images of integral imaging(Ⅱ) by utilizing the directional diffuser is demonstrated. In the traditional Ⅱ, the distortion originating from lens aberration wraps elemental images and degrades the image quality severely. According to the theoretical analysis and experiments, it can be proved that the farther the three-dimensional image is displayed from the lens array, the more serious the distortion is. To analyze the process of eliminating lens distortion, one lens and its corresponding elemental image are separated from the traditional Ⅱ. By introducing the directional diffuser, the aperture stop of the separated optical system changes from the eye's pupil to the lens. In terms of contrast experiments, the distortion of the improved display system is corrected effectively. In the experiment, when the distance between the reconstructed image and lens array is equal to 120 mm, the largest lens distortion is decreased from 46.6% to 3.3%.
基金National Natural Science Foundation of China (10477018) Science and Technology Innovation Foundation of North-western Polytechnical University (W016143)
文摘As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer-oriented element integration algorithm. In this algorithm, the relative dielectric constant and permeability are considered as constants for each the very thin monolayer of CPML, and the element integration of multilayer along the normal direction is substituted by the element integration of m...
基金Project supported by the National Natural Science Foundation of China(No.51078164)
文摘An integrated coupling element considering wheel-rail interface for analyzing the dynamic responses of vehicle-rail-bridge interaction system with a non-uniform continuous bridge is presented. The governing equations of the interaction system are established first, and the solution procedure and assembly method of the coupling element are demonstrated. Finally, the accuracy, efficiency and function of the integrated coupling element are tested using two numerical examples. The influences of different combinations of rail and bridge element length in the coupling element on the solution are investigated, and the effects of different rail irregularities on the dynamic responses are discussed.
文摘A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method are validated.Computational Fluid Dynamics (CFD),Finite Element Method (FEM) and RIA are used to predict the propeller excited underwater noise of the submarine hull structure.Firstly the propeller and submarine's flows are independently validated,then the self propulsion of the "submarine+propeller" system is simulated via CFD and the balanced point of the system is determined as well as the self propulsion factors.Secondly,the transient response of the "submarine+ propeller" system is analyzed at the balanced point,and the propeller thrust and torque excitations are calculated.Thirdly the thrust and the torque excitations of the propeller are loaded on the submarine,respectively,to calculate the acoustic response,and the sound power and the main peak frequencies are obtained.Results show that:(1) the thrust mainly excites the submarine axial mode and the high frequency area appears at the two conical-type ends,while the torque mainly excites the circumferential mode and the high frequency area appears at the broadside of the cylindrical section,but with rather smaller sound power and radiation efficiency than the former,(2) the main sound source appears at BPF and 2BPF and comes from the harmonic propeller excitations.So,the main attention should be paid on the thrust excitation control for the sound reduction of the propeller excited submarine structure.