The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert spa...The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.展开更多
It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution f...It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution. The stability of the solution is proved in the reproducing kernel space, namely, the measurement errors of the experimental data cannot result in unbounded errors of the true solution. The computation of approximate solution is also stable with respect to ||· ||c or ||L2· A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Mat...For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved. The purpose of this work is to establish a stability and convergence theory for this fast numerical method. The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of convergence observed in the numerical experiments are proved rigorously.展开更多
1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution...1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])展开更多
In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the soluti...In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and p...We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and possessing only a finite number of singularities or a product of such function with a highly oscillatory coefficient function. Contrast to wavelet-like approximations, ourapproximation matrix is not sparse. However, the approximation can be construced in O(n) operations and requires O(n) storage, where n is the number of quadrature points used in the discretization. Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is very accurate and stable for high degree polynomial interpolation.展开更多
The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obt...The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obtained in [1] when f(t) is a constant. Certain special cases are illustrated.展开更多
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly s...The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the conv...Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.展开更多
This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as ...This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.展开更多
Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integra...Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.展开更多
In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coeffici...In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coefficients and reflection by using the Fourier transform.In spite of the classical method for solution,we are to give another method,therefore the general solution and condition of solvability are obtained in class{0}.展开更多
In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by usi...In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.展开更多
In recent years, many methods have been used to find the exact solutions of nonlinear partial differential equations. One of them is called the first integral method, which is based on the ring theory of commutative a...In recent years, many methods have been used to find the exact solutions of nonlinear partial differential equations. One of them is called the first integral method, which is based on the ring theory of commutative algebra. In this paper, exact travelling wave solutions of the Non-Boussinesq wavepacket model and the (2 + 1)-dimensional Zoomeron equation are studied by using the first integral method. From the solving process and results, the first integral method has the characteristics of simplicity, directness and effectiveness about solving the exact travelling wave solutions of nonlinear partial differential equations. In other words, tedious calculations can be avoided by Maple software;the solutions of more accurate and richer travelling wave solutions are obtained. Therefore, this method is an effective method for solving exact solutions of nonlinear partial differential equations.展开更多
The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was c...The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.展开更多
The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic model in plasma. A series of new exact explicit solutions of the system are obtained, by means of the first integral meth...The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic model in plasma. A series of new exact explicit solutions of the system are obtained, by means of the first integral method, in the form of trigonometric and exponential functions. The results show the first integral method is an efficient way to solve the coupled nonlinear equations and get rich explicit analytical solutions.展开更多
文摘The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.
文摘It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution. The stability of the solution is proved in the reproducing kernel space, namely, the measurement errors of the experimental data cannot result in unbounded errors of the true solution. The computation of approximate solution is also stable with respect to ||· ||c or ||L2· A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
基金supported by an CERG grant of Hong Kong Research Grant Council and by FRG grants of Hong Kong Baptist University
文摘For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved. The purpose of this work is to establish a stability and convergence theory for this fast numerical method. The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of convergence observed in the numerical experiments are proved rigorously.
文摘1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])
文摘In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
基金Research supported in part by Hong Kong Research Grant Council grats no.CUHK178/83E
文摘We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and possessing only a finite number of singularities or a product of such function with a highly oscillatory coefficient function. Contrast to wavelet-like approximations, ourapproximation matrix is not sparse. However, the approximation can be construced in O(n) operations and requires O(n) storage, where n is the number of quadrature points used in the discretization. Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is very accurate and stable for high degree polynomial interpolation.
文摘The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obtained in [1] when f(t) is a constant. Certain special cases are illustrated.
文摘The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
文摘Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.
基金supported by National Natural Science Foundation of China(11401347,91430104,11671157,61401255,11426193)Shandong Province Natural Science Foundation(ZR2014AP003)
文摘This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.
基金Supported by the National Natural Science Foundation of China (60572048)the Natural Science Foundation of Guangdong Province(054006621)
文摘Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coefficients and reflection by using the Fourier transform.In spite of the classical method for solution,we are to give another method,therefore the general solution and condition of solvability are obtained in class{0}.
文摘In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.
文摘In recent years, many methods have been used to find the exact solutions of nonlinear partial differential equations. One of them is called the first integral method, which is based on the ring theory of commutative algebra. In this paper, exact travelling wave solutions of the Non-Boussinesq wavepacket model and the (2 + 1)-dimensional Zoomeron equation are studied by using the first integral method. From the solving process and results, the first integral method has the characteristics of simplicity, directness and effectiveness about solving the exact travelling wave solutions of nonlinear partial differential equations. In other words, tedious calculations can be avoided by Maple software;the solutions of more accurate and richer travelling wave solutions are obtained. Therefore, this method is an effective method for solving exact solutions of nonlinear partial differential equations.
文摘The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.
文摘The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic model in plasma. A series of new exact explicit solutions of the system are obtained, by means of the first integral method, in the form of trigonometric and exponential functions. The results show the first integral method is an efficient way to solve the coupled nonlinear equations and get rich explicit analytical solutions.