期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Downward continuation of airborne gravimetry data based on Poisson integral iteration method 被引量:1
1
作者 Xiaogang Liu Zhongmiao Sun +1 位作者 Kang Xu Mingda Ouyang 《Geodesy and Geodynamics》 2017年第4期273-277,共5页
The research and application of airborne gravimetry technology has become one of the hottest topics in gravity field in recent years. Downward continuation is one of the key steps in airborne gravimetry data processin... The research and application of airborne gravimetry technology has become one of the hottest topics in gravity field in recent years. Downward continuation is one of the key steps in airborne gravimetry data processing, and the quality of continuation results directly influence the further application of surveying data. The Poisson integral iteration method is proposed in this paper, and the modified Poisson integral discretization formulae are also introduced in the downward continuation of airborne gravimerty data. For the test area in this paper, compared with traditional Poisson integral discretization formula, the continuation result of modified formulae is improved by 10.8 mGal, and the precision of Poisson integral iteration method is in the same amplitude as modified formulae. So the Poisson integral iteration method can reduce the discretization error of Poisson integral formula effectively. Therefore, the research achievements in this paper can be applied directly in the data processing of our country's airborne scalar and vector gravimetry. 展开更多
关键词 Airborne gravimetry Downward continuation Poisson integral Gravity anomaly Discretization
下载PDF
The Optimal Matching Parameter of Half Discrete Hilbert Type Multiple Integral Inequalities with Non-Homogeneous Kernels and Applications
2
作者 HONG Yong HE Bing 《Chinese Quarterly Journal of Mathematics》 2021年第3期252-262,共11页
By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent ... By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered. 展开更多
关键词 Non-homogeneous kernel Half discrete Hilbert type multiple integral in-equality Best constant factor Optimal matching parameter Operator norm Bounded operator
下载PDF
Two new discrete integrable systems 被引量:1
3
作者 陈晓红 张鸿庆 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期63-66,共4页
In this paper,we focus on the construction of new(1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra A 1.By designing two new(1+1)-dimensional discrete spectral problems,two n... In this paper,we focus on the construction of new(1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra A 1.By designing two new(1+1)-dimensional discrete spectral problems,two new discrete integrable systems are obtained,namely,a 2-field lattice hierarchy and a 3-field lattice hierarchy.When deriving the two new discrete integrable systems,we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy.Moreover,we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity. 展开更多
关键词 discrete integrable system Hamiltonian structure loop algebra
下载PDF
Discrete integrable couplings associated with modified Korteweg-de Vries lattice and two hierarchies of discrete soliton equations 被引量:1
4
作者 董焕河 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第5期1177-1181,共5页
A direct way to construct integrable couplings for discrete systems is presented by use of two semi-direct sum Lie algebras. As their applications, the discrete integrable couplings associated with modified Korteweg-d... A direct way to construct integrable couplings for discrete systems is presented by use of two semi-direct sum Lie algebras. As their applications, the discrete integrable couplings associated with modified Korteweg-de Vries (m-KdV) lattice and two hierarchies of discrete soliton equations are developed. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards the complete classification of integrable couplings. 展开更多
关键词 discrete integrable system m-KdV lattice equation semi-direct sums of Lie algebras
下载PDF
Symmetries and variational calculation of discrete Hamiltonian systems 被引量:1
5
作者 夏丽莉 陈立群 +1 位作者 傅景礼 吴旌贺 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期192-198,共7页
We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discre... We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity. 展开更多
关键词 discrete Hamiltonian systems discrete variational integrators SYMMETRY conserved quantity
下载PDF
Symbolic Computation of Extended Jacobian Elliptic Function Algorithm for Nonlinear Differential-Different Equations
6
作者 DAIChao-Qing MENGJian-Ping ZHANGJie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3期471-478,共8页
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m... The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions. 展开更多
关键词 integrable discrete nonlinear Schrodinger equation extended Jacobian elliptic function expansion approach doubly-periodic wave solutions solitonic solutions singly-periodic wave solutions
下载PDF
Lattice soliton equation hierarchy and associated properties
7
作者 郑新卿 刘金元 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期37-42,共6页
As a new subject, soliton theory is shown to be an effective tool for describing and explaining nonlinear phenomena in nonlinear optics, super conductivity, plasma physics, magnetic fluid, etc. Thus, the study of soli... As a new subject, soliton theory is shown to be an effective tool for describing and explaining nonlinear phenomena in nonlinear optics, super conductivity, plasma physics, magnetic fluid, etc. Thus, the study of soliton equations has always been one of the most prominent events in the field of nonlinear science during the past few years. Moreover, it is important to seek the lattice soliton equation and study its properties. In this study, firstly, we derive a discrete integrable system by using the Tu model. Then, some properties of the obtained equation hierarchies are discussed. 展开更多
关键词 discrete integrable system Darboux transformation conservation laws
下载PDF
Optimal predication of double-star position/SINS based on discrete integration
8
作者 林雪原 何友 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第2期179-182,共4页
Aiming at Double-Star positioning system's shortcomings of delayed position information and easy exposition of the user as well as the error increase of the SINS with the accumulation of time, the integration of D... Aiming at Double-Star positioning system's shortcomings of delayed position information and easy exposition of the user as well as the error increase of the SINS with the accumulation of time, the integration of Double-Star positioning system and the SINS is one of the developing directions for an integrated navigation system. This paper puts forward an optimal predication method of Double-Star/SINS integrated system based on discrete integration, which can make use of the delayed position information of Double-Star positioning system to optimally predicate the integrated system, and then corrects the SINS. The experimental results show that this method can increase the user's concealment under the condition of assuring the system's accuracy. 展开更多
关键词 discrete integration optimal predication Double-Star positioning system SINS
下载PDF
Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product
9
作者 YU Fa-Jun ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第9期561-564,共4页
It is shown that the Kronecker product can be applied to constructing new discrete integrable couplingsystem of soliton equation hierarchy in this paper.A direct application to the fractional cubic Volterra lattice sp... It is shown that the Kronecker product can be applied to constructing new discrete integrable couplingsystem of soliton equation hierarchy in this paper.A direct application to the fractional cubic Volterra lattice spectralproblem leads to a novel integrable coupling system of soliton equation hierarchy.It is also indicated that the study ofdiscrete integrable couplings by using the Kronecker product is an efficient and straightforward method.This methodcan be used generally. 展开更多
关键词 Kronecker product fractional cubic Volterra lattice equation discrete integrable couplings
下载PDF
Discrete AKNS-D Hierarchy
10
作者 WU Xiao-Ning 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3期385-389,共5页
In this paper, we consider the discrete AKNS-D hierarchy, make the construction of the hierarchy, prove the bilinear identity and give the construction of the τ-functions of this hierarchy.
关键词 discrete integrable system AKNS-D hierarchy
下载PDF
Discrete Generalizations of Some N-Independent-Variable Integral Inequalities of Langenhop-Gollwitzer Type 被引量:5
11
作者 杨恩浩 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1990年第3期230-242,共13页
We establish some new n-independent-variable discrete inequalities which are analo- gous to some Langenhop-Gollwitzer type integral inequalities obtained by the present author in J. Math.Anal.Appl.,109(1985),171-181.A... We establish some new n-independent-variable discrete inequalities which are analo- gous to some Langenhop-Gollwitzer type integral inequalities obtained by the present author in J. Math.Anal.Appl.,109(1985),171-181.An application to hyperbolic summary-difference equations in n variables is also sketched. 展开更多
关键词 Discrete Generalizations of Some N-Independent-Variable integral Inequalities of Langenhop-Gollwitzer Type
原文传递
Solitons and quasi-Grammians of the generalized lattice Heisenberg magnet model
12
作者 Zeeshan Amjad Bushra Haider 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第8期42-53,共12页
In this paper,we study the discrete Darboux and standard binary Darboux transformation for the generalized lattice Heisenberg magnet model.We calculate the quasi-Grammian solutions by the iteration of standard binary ... In this paper,we study the discrete Darboux and standard binary Darboux transformation for the generalized lattice Heisenberg magnet model.We calculate the quasi-Grammian solutions by the iteration of standard binary Darboux transformation.Furthermore,we derive the explicit matrix solutions for the binary Darboux matrix and then reduce them to the elementary Darboux matrix and plot the dynamics of solutions. 展开更多
关键词 quasi-Grammian discrete integrable systems binary Darboux transformation
原文传递
Conservation laws of some lattice equations 被引量:1
13
作者 Junwei CHENG Dajun ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第5期1001-1016,共16页
We derive infinitely many conservation laws for some multi- dimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation,... We derive infinitely many conservation laws for some multi- dimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation, lattice nonlinear SchrSdinger equation, modified lattice Boussinesq equation, Hietarinta's Boussinesq-type equations, Schwarzian lattice Boussinesq equation, and Toda-modified lattice Boussinesq equation. 展开更多
关键词 Conservation law Lax pair multi-dimensionally consistent lattice equation discrete integrable system
原文传递
Integrable discretization of soliton equations via bilinear method and Backlund transformation
14
作者 ZHANG Ying Nan CHANG Xiang Ke +2 位作者 HU Juan HU Xing Biao TAM Hon-Wah 《Science China Mathematics》 SCIE CSCD 2015年第2期279-296,共18页
We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund tr... We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund transformation.We apply this procedure to several equations,including the extended Korteweg-deVries(Kd V)equation,the extended Kadomtsev-Petviashvili(KP)equation,the extended Boussinesq equation,the extended Sawada-Kotera(SK)equation and the extended Ito equation,and obtain their associated semidiscrete analogues.In the continuum limit,these differential-difference systems converge to their corresponding smooth equations.For these new integrable systems,their B¨acklund transformations and Lax pairs are derived. 展开更多
关键词 integrable discretization bilinear method Backlund transformation
原文传递
A New Negative Discrete Hierarchy and Its N-Fold Darboux Transformation
15
作者 张宁 夏铁成 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第12期687-692,共6页
Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its... Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained. 展开更多
关键词 discrete integrable system bi-Hamiltonian structure Liouville integrability N-fold Darboux transformation exact solutions
原文传递
Multi-Soliton Solutions and Integrable Discretization for a Coupled Modified Volterra Lattice Equation
16
作者 赵海琼 朱佐农 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第8期244-250,共7页
In this paper, we study a coupled modified Volterra lattice equation which is an integrable semidiscrete version of the coupled KdV and the coupled mKdV equation. By using the Darboux transformation, we obtain its new... In this paper, we study a coupled modified Volterra lattice equation which is an integrable semidiscrete version of the coupled KdV and the coupled mKdV equation. By using the Darboux transformation, we obtain its new explicit solutions including multi-soliton and multi-positon. Furthermore, an integrable discretization of the coupled modified Volterra lattice equation is constructed. 展开更多
关键词 coupled modified Volterra lattice multi-soliton integrable discretization
原文传递
Integrable discretizations of the Dym equation
17
作者 Bao-Feng FENG Jun-ichi INOGUCHI +2 位作者 Kenji KAJIWARA Ken-ichi MARUNO Yasuhiro OHTA 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第5期1017-1029,共13页
Integrable discretizations of are proposed. N-soliton solutions for analogues of the complex and real Dym the complex and real Dym equations both semi-discrete and fully discrete equations are also presented.
关键词 Dym equation integrable discretization N-soliton solution
原文传递
A COMBINATORIAL ASPECT OF A DISCRETE-TIME SEMI-INFINITE LOTKA-VOLTERRA EQUATION
18
作者 Shuhei KAMIOKA Satoru MIZUTANI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第1期71-80,共10页
A graph is introduced,which allows of a combinatorial interpretation of a discrete-timesemi-infinite Lotka-Volterra (dLV) equation.In particular,Hankel determinants used in a determinantsolution to the dLV equation ar... A graph is introduced,which allows of a combinatorial interpretation of a discrete-timesemi-infinite Lotka-Volterra (dLV) equation.In particular,Hankel determinants used in a determinantsolution to the dLV equation are evaluated,via the Gessel-Viennot method,in terms of non-intersectingsubgraphs.Further,the recurrence of the dLV equation describing its time-evolution is equivalentlyexpressed as a time-evolution of weight of specific subgraphs. 展开更多
关键词 Combinatorial proofs discrete integrable systems dynamics on graphs Gessel-Viennot method Hankel determinants non-intersecting paths weighted paths on labeled graphs.
原文传递
A DISSIPATION-PRESERVING INTEGRATOR FOR DAMPED OSCILLATORY HAMILTONIAN SYSTEMS
19
作者 Wei Shi Kai Liu 《Journal of Computational Mathematics》 SCIE CSCD 2022年第4期570-588,共19页
In this paper,based on discrete gradient,a dissipation-preserving integrator for weakly dissipative perturbations of oscillatory Hamiltonian system is established.The solution of this system is a damped nonlinear osci... In this paper,based on discrete gradient,a dissipation-preserving integrator for weakly dissipative perturbations of oscillatory Hamiltonian system is established.The solution of this system is a damped nonlinear oscillator.Basically,lots of nonlinear oscillatory mechanical systems including frictional forces lend themselves to this approach.The new integrator gives a discrete analogue of the dissipation property of the original system.Meanwhile,since the integrator is based on the variation-of-constants formula for oscillatory systems,it preserves the oscillatory structure of the system.Some properties of the new integrator are derived.The convergence is analyzed for the implicit iterations based on the discrete gradient integrator,and it turns out that the convergence of the implicit iterations based on the new integrator is independent of k Mk,where M governs the main oscillation of the system and usually k Mk≫1.This significant property shows that a larger stepsize can be chosen for the new schemes than that for the traditional discrete gradient integrators when applied to the oscillatory Hamiltonian system.Numerical experiments are carried out to show the effectiveness and efficiency of the new integrator in comparison with the traditional discrete gradient methods in the scientific literature。 展开更多
关键词 Weakly dissipative systems Oscillatory systems Structure-preserving algorithm Discrete gradient integrator Sine-Gordon equation Continuousα-Fermi-Pasta-Ulam system
原文传递
A tight sandstone multi-physical hydraulic fractures simulator study and its field application
20
作者 Yonghong Wang Binshan Ju +2 位作者 Shihao Wang Zhenzhou Yang Qing Liu 《Petroleum》 CSCD 2020年第2期198-205,共8页
During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing tech... During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing technology is essential and critical.In this paper,we present the development of a three-dimensional thermalhydraulic-mechanical numerical simulator for the simulation of hydraulic fracturing operations in tight sandstone reservoirs.Our simulator is based on integrated finite difference(IFD)method.In this method,the simulation domain is subdivided into sub domains and the governing equations are integrated over a sub domain with flux terms expressed as an integral over the sub domain boundary using the divergence theorem.Our simulator conducts coupled thermal-hydraulic-mechanical simulation of the initiation and extension of hydraulic fractures.It also calculates the mass/heat transport of injected hydraulic fluids as well as proppants.Our simulator is able to handle anisotropic formations with multiple layers.Our simulator has been validated by comparing with an analytical solution as well as Ribeiro and Sharma model.Our model can simulate fracture spacing effect on fracture profile when combining IFD with Discontinuous Displacement Method(DDM). 展开更多
关键词 Tight sandstone Hydraulic fracture simulator Integrated finite difference discretization Stress contrast
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部