It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert spa...The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.展开更多
Accurate surface charge inversion can guide the research on surface modification of insulators in GIS/GIL.The current inversion algorithms have disadvantages of high computational cost and low accuracy.Based on that,t...Accurate surface charge inversion can guide the research on surface modification of insulators in GIS/GIL.The current inversion algorithms have disadvantages of high computational cost and low accuracy.Based on that,the integral equation method(IEM)is proposed to calculate the transformation matrix.Compared with the traditional analytical method(AM),IEM has a simple calculation process.The calculation speed of IEM is much faster than that of AM.To suppress the numerical divergence in IEM,the Tikhonov regularisation method is introduced and Tikhonov-IEM is proposed.For square insulators,compared to IEM,the peak-mean square error(PMSE)is reduced by about 40 percent.However,Tikhonov-IEM is not suitable for basin insulators.Therefore,the least square method(LSM)is introduced and the LSM-IEM is proposed.For basin insulators,compared to IEM,the PMSE is reduced by about 30 percent.Finally,the accuracy of the algorithms is verified by physical tests.展开更多
This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations in...This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.展开更多
In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained re...In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
The aim of this paper is to solve the two-dimensional acoustic scattering problems by random sphere using Electric field integral equation. Some approximations for the two-dimensional case are derived. These various a...The aim of this paper is to solve the two-dimensional acoustic scattering problems by random sphere using Electric field integral equation. Some approximations for the two-dimensional case are derived. These various approximations are next numerically validated in the case of high-frequency.展开更多
This work proposes a new definition of the functional Fredholm integral equation in 2D of the second kind with discontinuous kernels (FT-DFIE). Furthermore, the work is concerned to study this new equation numerically...This work proposes a new definition of the functional Fredholm integral equation in 2D of the second kind with discontinuous kernels (FT-DFIE). Furthermore, the work is concerned to study this new equation numerically. The existence of a unique solution of the equation is proved. In addition, the approximate solutions are obtained by two powerful methods Toeplitz Matrix Method (TMM) and Product Nystr?m Methods (PNM). The given numerical examples showed the efficiency and accuracy of the introduced methods.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of...In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of n-dimensional SDEs under the excitation ofα-stable Lévy noise are obtained through the characteristic function of stochastic processes.Then,the short-time transition probability density func-tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski(CKS)equation and the characteristic function,and its correctness is demonstrated by proving that it satis-fies the governing equation of the solution of the SDE,which is also called the Fokker-Planck-Kolmogorov equation.Besides,illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method,and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.展开更多
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function...In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.展开更多
The analytical solution of the multi-dimensional,time-fractional model of Navier-Stokes equation using the triple and quadruple Elzaki transformdecompositionmethod is presented in this article.The aforesaidmodel is an...The analytical solution of the multi-dimensional,time-fractional model of Navier-Stokes equation using the triple and quadruple Elzaki transformdecompositionmethod is presented in this article.The aforesaidmodel is analyzed by employing Caputo fractional derivative.We deliberated three stimulating examples that correspond to the triple and quadruple Elzaki transform decomposition methods,respectively.The findings illustrate that the established approaches are extremely helpful in obtaining exact and approximate solutions to the problems.The exact and estimated solutions are delineated via numerical simulation.The proposed analysis indicates that the projected configuration is extremely meticulous,highly efficient,and precise in understanding the behavior of complex evolutionary problems of both fractional and integer order that classify affiliated scientific fields and technology.展开更多
Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integra...Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.
基金Key R&D project of Hebei Province,Grant/Award Number:19212109D。
文摘Accurate surface charge inversion can guide the research on surface modification of insulators in GIS/GIL.The current inversion algorithms have disadvantages of high computational cost and low accuracy.Based on that,the integral equation method(IEM)is proposed to calculate the transformation matrix.Compared with the traditional analytical method(AM),IEM has a simple calculation process.The calculation speed of IEM is much faster than that of AM.To suppress the numerical divergence in IEM,the Tikhonov regularisation method is introduced and Tikhonov-IEM is proposed.For square insulators,compared to IEM,the peak-mean square error(PMSE)is reduced by about 40 percent.However,Tikhonov-IEM is not suitable for basin insulators.Therefore,the least square method(LSM)is introduced and the LSM-IEM is proposed.For basin insulators,compared to IEM,the PMSE is reduced by about 30 percent.Finally,the accuracy of the algorithms is verified by physical tests.
基金Supported by the NSF of Hubei Province(2022CFD042)。
文摘This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.
文摘In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
文摘The aim of this paper is to solve the two-dimensional acoustic scattering problems by random sphere using Electric field integral equation. Some approximations for the two-dimensional case are derived. These various approximations are next numerically validated in the case of high-frequency.
文摘This work proposes a new definition of the functional Fredholm integral equation in 2D of the second kind with discontinuous kernels (FT-DFIE). Furthermore, the work is concerned to study this new equation numerically. The existence of a unique solution of the equation is proved. In addition, the approximate solutions are obtained by two powerful methods Toeplitz Matrix Method (TMM) and Product Nystr?m Methods (PNM). The given numerical examples showed the efficiency and accuracy of the introduced methods.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
基金This work was supported by the Key International(Regional)Joint Research Program of the National Natural Science Foundation of China(No.12120101002).
文摘In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of n-dimensional SDEs under the excitation ofα-stable Lévy noise are obtained through the characteristic function of stochastic processes.Then,the short-time transition probability density func-tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski(CKS)equation and the characteristic function,and its correctness is demonstrated by proving that it satis-fies the governing equation of the solution of the SDE,which is also called the Fokker-Planck-Kolmogorov equation.Besides,illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method,and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.
文摘In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.
基金supported by the Natural Science Foundation of China(GrantNos.61673169,11301127,11701176,11626101,11601485).
文摘The analytical solution of the multi-dimensional,time-fractional model of Navier-Stokes equation using the triple and quadruple Elzaki transformdecompositionmethod is presented in this article.The aforesaidmodel is analyzed by employing Caputo fractional derivative.We deliberated three stimulating examples that correspond to the triple and quadruple Elzaki transform decomposition methods,respectively.The findings illustrate that the established approaches are extremely helpful in obtaining exact and approximate solutions to the problems.The exact and estimated solutions are delineated via numerical simulation.The proposed analysis indicates that the projected configuration is extremely meticulous,highly efficient,and precise in understanding the behavior of complex evolutionary problems of both fractional and integer order that classify affiliated scientific fields and technology.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275144,12235007,and 11975131)K.C.Wong Magna Fund in Ningbo University。
文摘Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.