Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-...Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.展开更多
The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I...The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.展开更多
The non-uniqueness of solution and compatibility between the coupled boundary conditions in computing velocity potential and streamfunction from horizontal velocity in a limited domain of arbitrary shape are revisited...The non-uniqueness of solution and compatibility between the coupled boundary conditions in computing velocity potential and streamfunction from horizontal velocity in a limited domain of arbitrary shape are revisited theoretically with rigorous mathematic treatments.Classic integral formulas and their variants are used to formulate solutions for the coupled problems.In the absence of data holes,the total solution is the sum of two integral solutions.One is the internally induced solution produced purely and uniquely by the domain internal divergence and vorticity,and its two components(velocity potential and streamfunction) can be constructed by applying Green's function for Poisson equation in unbounded domain to the divergence and vorticity inside the domain.The other is the externally induced solution produced purely but non-uniquely by the domain external divergence and vorticity,and the non-uniqueness is caused by the harmonic nature of the solution and the unknown divergence and vorticity distributions outside the domain.By setting either the velocity potential(or streamfunction) component to zero,the other component of the externally induced solution can be expressed by the imaginary(or real) part of the Cauchy integral constructed using the coupled boundary conditions and solvability conditions that exclude the internally induced solution.The streamfunction(or velocity potential) for the externally induced solution can also be expressed by the boundary integral of a double-layer(or singlelayer) density function.In the presence of data holes,the total solution includes a data-hole-induced solution in addition to the above internally and externally induced solutions.展开更多
When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and st...When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem (the reciprocal theorem). According to the basic solution to Biot's equation, Green's function Gij and three terms of Green's function G4i, Gi4, and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented. The displacement field with drainage, the magnitude of drainage, and the pore pressure of the center explosion source are obtained in computation. The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared. Good agreement is observed.展开更多
After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress func...After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.展开更多
By bianalytic functions, the boundary integral formula of the stress function for the elastic problem in a circle plane is developed. But this integral formula includes a strongly singular integral and can not be dire...By bianalytic functions, the boundary integral formula of the stress function for the elastic problem in a circle plane is developed. But this integral formula includes a strongly singular integral and can not be directly calculated. After the stress function is expounded to Fourier series, making use of some formulas in generalized functions to the convolutions, the boundary integral formula which does not include strongly singular integral is derived further. Then the stress function can be got simply by the integration of the values of the stress function and its derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function for the elastic problem is convenient.展开更多
In this paper we set up quantum mechanical correspondence of the Poisson integral formula.We show that Poisson kernel function existing in the transformation between the continuum entangled state representation and it...In this paper we set up quantum mechanical correspondence of the Poisson integral formula.We show that Poisson kernel function existing in the transformation between the continuum entangled state representation and its induced state,i.e.the number-difference-correlated amplitude entangled state representation.展开更多
It is important to calculate the Hausdorff dimension and the Hausdorff mesure respect to this dimension for some fractal sets. By using the usual method of “Mass Distribution”, we can only calculate the Hausdorff di...It is important to calculate the Hausdorff dimension and the Hausdorff mesure respect to this dimension for some fractal sets. By using the usual method of “Mass Distribution”, we can only calculate the Hausdorff dimension. In this paper, we will construct an integral formula by using lower inverse s-density and then use it to calculate the Hausdorff measures for some fractional dimensional sets.展开更多
First, this paper gives another integral representation an bounded convex domain in complex submanifold. Second, using this integral representation, the author easely gets the strengthen consequence of Elgueta.
Given a positive function F on S^n which satisfies a convexity condition, we introduce the r-th anisotropic mean curvature Mr for hypersurfaces in R^n+1 which is a generalization of the usual r-th mean curvature Hr. ...Given a positive function F on S^n which satisfies a convexity condition, we introduce the r-th anisotropic mean curvature Mr for hypersurfaces in R^n+1 which is a generalization of the usual r-th mean curvature Hr. We get integral formulas of Minkowski type for compact hypersurfaces in R^n+1. We give some new characterizations of the Wulff shape by the use of our integral formulas of Minkowski type, in case F=1 which reduces to some well-known results.展开更多
In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal...In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.展开更多
We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the ...We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.展开更多
This article generalizes the formulas of Gauss-Ostrogradskii type for semibasic vector fields from Riemannian manifolds to real Finsler manifolds and obtains some formulas of Gauss-Ostrogradskii type for Finsler vecto...This article generalizes the formulas of Gauss-Ostrogradskii type for semibasic vector fields from Riemannian manifolds to real Finsler manifolds and obtains some formulas of Gauss-Ostrogradskii type for Finsler vector fields which are expressed in terms of the vertical and horizontal derivatives of the Cartan connection in real Finsler manifolds.展开更多
We point out a new route to deducing integration formulas, i.e., using the technique of integration within an ordered product (IWOP) of operators we derive some new integration formulas, which seems concise. As a by...We point out a new route to deducing integration formulas, i.e., using the technique of integration within an ordered product (IWOP) of operators we derive some new integration formulas, which seems concise. As a by-product, some new operator identities also appear.展开更多
It is very difficult to know the exact boundaries of the variable domain for problems with small sample size,and the traditional convex set model is no longer applicable.In view of this,a novel reliability model was p...It is very difficult to know the exact boundaries of the variable domain for problems with small sample size,and the traditional convex set model is no longer applicable.In view of this,a novel reliability model was proposed on the basis of the fuzzy convex set(FCS)model.This new reliability model can account for different relations between the structural failure region and variable domain.Key computational algorithms were studied in detail.First,the optimization strategy for robust reliability is improved.Second,Monte Carlo algorithms(i.e.,uniform sampling method)for hyper-ellipsoidal convex sets were studied in detail,and errors in previous reports were corrected.Finally,the Gauss-Legendre integral algorithm was used for calculation of the integral reliability index.Three numerical examples are presented here to illustrate the rationality and feasibility of the proposed model and its corresponding algorithms.展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z =...This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.展开更多
For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral f...For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.展开更多
The higher spin operator of several R^(6)variables is an analogue of the■-operator in theory of several complex variables.The higher spin representation of so6(C)is⊙^(k)C_(4)and the higher spin operator D_(k) acts o...The higher spin operator of several R^(6)variables is an analogue of the■-operator in theory of several complex variables.The higher spin representation of so6(C)is⊙^(k)C_(4)and the higher spin operator D_(k) acts on⊙^(k)C_(4)-valued functions.In this paper,the authors establish the Bochner-Martinelli formula for higher spin operator Dk of several R^(6)variables.The embedding of R^(6n) into the space of complex 4n×4 matrices allows them to use two-component notation,which makes the spinor calculus on R^(6n)more concrete and explicit.A function annihilated by D_(k ) is called k-monogenic.They give the Penrose integral formula over R^(6n) and construct many k-monogenic polynomials.展开更多
By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable ...By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.展开更多
基金Supported by the National Natural Science Foundation of China(11871191)the Science Foundation of Hebei Province(A2023205006,A2019106037)+2 种基金the Key Development Foundation of Hebei Normal University in2024(L2024ZD08)the Graduate Student Innovation Project Fund of Hebei Province(CXZZBS2022066)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.
基金Supported by National Nature Science Foundation in China(12101564,11971425,11801508)Nature Science Foundation of Zhejiang province(LY22A010013)Domestic Visiting Scholar Teacher Professional Development Project(FX2021042)。
文摘The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.
基金supported by the Office of Naval Research (Grant No. N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement (No. NA17RJ1227),U.S. Department of Commerce
文摘The non-uniqueness of solution and compatibility between the coupled boundary conditions in computing velocity potential and streamfunction from horizontal velocity in a limited domain of arbitrary shape are revisited theoretically with rigorous mathematic treatments.Classic integral formulas and their variants are used to formulate solutions for the coupled problems.In the absence of data holes,the total solution is the sum of two integral solutions.One is the internally induced solution produced purely and uniquely by the domain internal divergence and vorticity,and its two components(velocity potential and streamfunction) can be constructed by applying Green's function for Poisson equation in unbounded domain to the divergence and vorticity inside the domain.The other is the externally induced solution produced purely but non-uniquely by the domain external divergence and vorticity,and the non-uniqueness is caused by the harmonic nature of the solution and the unknown divergence and vorticity distributions outside the domain.By setting either the velocity potential(or streamfunction) component to zero,the other component of the externally induced solution can be expressed by the imaginary(or real) part of the Cauchy integral constructed using the coupled boundary conditions and solvability conditions that exclude the internally induced solution.The streamfunction(or velocity potential) for the externally induced solution can also be expressed by the boundary integral of a double-layer(or singlelayer) density function.In the presence of data holes,the total solution includes a data-hole-induced solution in addition to the above internally and externally induced solutions.
基金Project supported by the National Natural Science Foundation of China(No.10572129)
文摘When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem (the reciprocal theorem). According to the basic solution to Biot's equation, Green's function Gij and three terms of Green's function G4i, Gi4, and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented. The displacement field with drainage, the magnitude of drainage, and the pore pressure of the center explosion source are obtained in computation. The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared. Good agreement is observed.
文摘After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.
文摘By bianalytic functions, the boundary integral formula of the stress function for the elastic problem in a circle plane is developed. But this integral formula includes a strongly singular integral and can not be directly calculated. After the stress function is expounded to Fourier series, making use of some formulas in generalized functions to the convolutions, the boundary integral formula which does not include strongly singular integral is derived further. Then the stress function can be got simply by the integration of the values of the stress function and its derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function for the elastic problem is convenient.
基金Supported by the National Natural Science Foundation of China under Grant No.10874174 the Specialized Reserach Fund for The Doctoral Progress of Higher Education of China under Grant No.20070358009
文摘In this paper we set up quantum mechanical correspondence of the Poisson integral formula.We show that Poisson kernel function existing in the transformation between the continuum entangled state representation and its induced state,i.e.the number-difference-correlated amplitude entangled state representation.
文摘It is important to calculate the Hausdorff dimension and the Hausdorff mesure respect to this dimension for some fractal sets. By using the usual method of “Mass Distribution”, we can only calculate the Hausdorff dimension. In this paper, we will construct an integral formula by using lower inverse s-density and then use it to calculate the Hausdorff measures for some fractional dimensional sets.
文摘First, this paper gives another integral representation an bounded convex domain in complex submanifold. Second, using this integral representation, the author easely gets the strengthen consequence of Elgueta.
基金Tianyuan Fund for Mathematics of NSFC (Grant No.10526030)Grant No.10531090 of the NSFCDoctoral Program Foundation of the Ministry of Education of China (2006)
文摘Given a positive function F on S^n which satisfies a convexity condition, we introduce the r-th anisotropic mean curvature Mr for hypersurfaces in R^n+1 which is a generalization of the usual r-th mean curvature Hr. We get integral formulas of Minkowski type for compact hypersurfaces in R^n+1. We give some new characterizations of the Wulff shape by the use of our integral formulas of Minkowski type, in case F=1 which reduces to some well-known results.
基金supported by the Natural Science Foundation of China(11901005,12071003)the Natural Science Foundation of Anhui Province(2008085QA20)。
文摘In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.
文摘We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.
基金Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation of China(10601040,10571144)+1 种基金the Tian Yuan Foundation of China(10526033)China Postdoctoral Science Foundation(2005038639)
文摘This article generalizes the formulas of Gauss-Ostrogradskii type for semibasic vector fields from Riemannian manifolds to real Finsler manifolds and obtains some formulas of Gauss-Ostrogradskii type for Finsler vector fields which are expressed in terms of the vertical and horizontal derivatives of the Cartan connection in real Finsler manifolds.
基金*Supported by the National Natural Science Foundation of China under Grant No. 10775097, and the Natural Science Foundation of Heze University of Shandong Province, under Crant No. XY07WL01
文摘We point out a new route to deducing integration formulas, i.e., using the technique of integration within an ordered product (IWOP) of operators we derive some new integration formulas, which seems concise. As a by-product, some new operator identities also appear.
基金funded by National Natural Science Foundation of China(No.51509254).
文摘It is very difficult to know the exact boundaries of the variable domain for problems with small sample size,and the traditional convex set model is no longer applicable.In view of this,a novel reliability model was proposed on the basis of the fuzzy convex set(FCS)model.This new reliability model can account for different relations between the structural failure region and variable domain.Key computational algorithms were studied in detail.First,the optimization strategy for robust reliability is improved.Second,Monte Carlo algorithms(i.e.,uniform sampling method)for hyper-ellipsoidal convex sets were studied in detail,and errors in previous reports were corrected.Finally,the Gauss-Legendre integral algorithm was used for calculation of the integral reliability index.Three numerical examples are presented here to illustrate the rationality and feasibility of the proposed model and its corresponding algorithms.
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
文摘This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.
基金Project supported by the National Basic Research Program of China (No. 2007CB209400)the National Nature Fond (No. 50774077 and 50774081)the National Fond of Author of Doctor Thesis (100760)
文摘For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.
基金supported by the National Nature Science Foundation of China(Nos.12101564,11801508,11801523)the Nature Science Foundation of Zhejiang Province(No.LY22A010013)。
文摘The higher spin operator of several R^(6)variables is an analogue of the■-operator in theory of several complex variables.The higher spin representation of so6(C)is⊙^(k)C_(4)and the higher spin operator D_(k) acts on⊙^(k)C_(4)-valued functions.In this paper,the authors establish the Bochner-Martinelli formula for higher spin operator Dk of several R^(6)variables.The embedding of R^(6n) into the space of complex 4n×4 matrices allows them to use two-component notation,which makes the spinor calculus on R^(6n)more concrete and explicit.A function annihilated by D_(k ) is called k-monogenic.They give the Penrose integral formula over R^(6n) and construct many k-monogenic polynomials.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.