Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient funct...Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).展开更多
In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for ...In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems.展开更多
In this paper we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Thenb, by using the theorem. wegive the existence criteria of solutions for a systems of ...In this paper we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Thenb, by using the theorem. wegive the existence criteria of solutions for a systems of nonlinear random Volterraintegral equations and for the Cauchy problem of a system of nonlinear random differential equations. The existence of extremal random solutions and random comparison results for these systems of random equations are also obtained Our theorems improve and generalize the corresponding results of Vaughn Lakshmikantham Lakshmidantham-Leela De blasi-Myjak and Ding展开更多
The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable B...The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.展开更多
A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterizat...A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterization and study of the operation,even in the presence of multiple obstacles along the path.To that end,applying the theory of graphs to the problem under study and using a special mathematical model based on stochastic geometry,in this article we consider some regular lattices in which it is possible to schematize the elements of the network,with the fundamental cell with six,eight or 2(n+2)obstacles,calculating the probability of Laplace.In this way it is possible to measure the“degree of impedance”exerted by the anomalies along the network by the obstacles examined.The method can be extended to other regular and/or irregular geometric figures,whose union together constitutes the examined network,allowing to optimize the functioning of the complex system considered.展开更多
文摘Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).
文摘In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems.
文摘In this paper we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Thenb, by using the theorem. wegive the existence criteria of solutions for a systems of nonlinear random Volterraintegral equations and for the Cauchy problem of a system of nonlinear random differential equations. The existence of extremal random solutions and random comparison results for these systems of random equations are also obtained Our theorems improve and generalize the corresponding results of Vaughn Lakshmikantham Lakshmidantham-Leela De blasi-Myjak and Ding
基金Project supported by the Natural Science Foundation of Yibin University (No. 2011Z03)
文摘The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.
文摘A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterization and study of the operation,even in the presence of multiple obstacles along the path.To that end,applying the theory of graphs to the problem under study and using a special mathematical model based on stochastic geometry,in this article we consider some regular lattices in which it is possible to schematize the elements of the network,with the fundamental cell with six,eight or 2(n+2)obstacles,calculating the probability of Laplace.In this way it is possible to measure the“degree of impedance”exerted by the anomalies along the network by the obstacles examined.The method can be extended to other regular and/or irregular geometric figures,whose union together constitutes the examined network,allowing to optimize the functioning of the complex system considered.