In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimet...With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy.展开更多
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal...A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscente...This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.展开更多
The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precisi...The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.展开更多
Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional metho...Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AF1S (adaptive fuzzy inference systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed method to reduce the navigation system errors in comparison with KF alone.展开更多
Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightl...Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
文摘With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy.
基金This project was supported by the National Natural Science Foundation of China (40125013 &40376011)
文摘A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.
基金supported by the National Basic Research Program of China(973Program)(2014CB744206)
文摘This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.
文摘The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.
文摘Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AF1S (adaptive fuzzy inference systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed method to reduce the navigation system errors in comparison with KF alone.
基金The National Basic Research Program of China(973 Program)(No.2009CB724002)the National Natural Science Foundation of China(No.50975049)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039)the Aviation Science Foundation(No.20090869008)the Six Peak Talents Foundation in Jiangsu Province(No.2008143)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)
文摘Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.