Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studie...Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studied for a tropical station Hyderabad(17.4°N,78.46°E).The data is validated with ECMWF Re-Analysis(ERA)91 level data.Relationships of IWV with other atmospheric variables like surface temperature,rain,and precipitation efficiency have been established through cross-correlation studies.A positive correlation coefficient is observed between IWV and surface temperature over two years.But the coefficient becomes negative when only summer monsoon months(June,July,August,and September)are considered.Rainfall during these months cools down the surface and could be the reason for this change in the correlation coefficient.Correlation studies between IWV-precipitation,IWVprecipitation efficiency(P.E),and precipitation-P.E show that coefficients are-0.05,-0.10 and 0.983 with 95%confidence level respectively,which proves that the efficacy of rain does not depend only on the level of water vapor.A proper dynamic mechanism is necessary to convert water vapor into the rain.The diurnal variations of IWV during active and break spells have been analyzed.The amplitudes of diurnal oscillation and its harmonics of individual spell do not show clear trends but the mean amplitudes of the break spells are approximately double than those of the active spells.The amplitudes of diurnal,semidiurnal and ter-diurnal components during break spells are 1.08 kg/m^(2),0.52 kg/m;and 0.34 kg/m;respectively.The corresponding amplitudes during active spells are 0.68 kg/m^(2),0.41 kg/m;and 0.23 kg/m;.展开更多
Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing wit...Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles.展开更多
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, mo...The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.展开更多
In this paper, some features of cloud liquid water content with respect to rain and water vapor are presented. Cloud liquid water density profile is obtained from radiosonde observation with Salonen's model and Ka...In this paper, some features of cloud liquid water content with respect to rain and water vapor are presented. Cloud liquid water density profile is obtained from radiosonde observation with Salonen's model and Karsten's model at Kolkata, a tropical location in the Indian region. Cloud liquid water contents (LWC) are obtained from these profiles which show a prominent seasonal variation. The monsoon months exhibit much higher values of LWC than in other months. However Salonen's model yields higher LWC values than that obtained with Karsten's model. The variation of daily total rainfall with LWC shows a positive relationship indicating the role of LWC in controlling the rainfall. Also the variation pattern of LWC with integrated water vapor (IWV) content of the atmosphere indicates that a threshold value of water vapor is required for cloud to form and once cloud is formed LWC increases with IWV.展开更多
基于德国RPG公司研制的14通道地基微波辐射计(RPG-HATRPO-G3)反演的2014年10月至2015年9月济南地区的水汽和液态水产品,分析了济南地区水汽和云液态水不同季节的月变化、日变化特征及其在强对流天气与小雨天气中的变化趋势。结果表明:2...基于德国RPG公司研制的14通道地基微波辐射计(RPG-HATRPO-G3)反演的2014年10月至2015年9月济南地区的水汽和液态水产品,分析了济南地区水汽和云液态水不同季节的月变化、日变化特征及其在强对流天气与小雨天气中的变化趋势。结果表明:2014年10月至2015年9月济南地区柱大气积分水汽量(Integrated Water Vapour,IWV)具有明显的月变化特征,其变化趋势与多年(1981—2010年)月平均降水量相关性较好,IWV夏季最高、冬季最低,四季IWV均具有弱的日变化特征,四季IWV标准偏差按照夏季、秋季、春季、冬季的顺序递减。对于济南地区春季、夏季、秋季3个季节有云无雨和降水前后液态水路径(Liquid Water Path,LWP)的数据,春季LWP可用数据量最少,夏季LWP可用数据量最多;月LWP在0—200 g·m^(-2)范围内的数据占总数据的比例最多,LWP数值越大,其所占比例越小。月LWP大于1000 g·m^(-2)数据的比例随着夏季的临近和降水量的逐渐增加也呈增加的趋势。IWV和LWP在强对流过程发生前均明显增长,数值大于1000 g·m^(-2)的LWP数据比例为53.41%;而小雨天气发生前IWV呈波动上升的趋势,LWP仅在临近降水时才明显增大,LWP数值主要分布在0—200 g·m^(-2)之间,占总数据的比例为86.56%。展开更多
基金research fellowship offered by ISRO under RESPOND program[No.ISRO/RES/2/406/16-17]。
文摘Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studied for a tropical station Hyderabad(17.4°N,78.46°E).The data is validated with ECMWF Re-Analysis(ERA)91 level data.Relationships of IWV with other atmospheric variables like surface temperature,rain,and precipitation efficiency have been established through cross-correlation studies.A positive correlation coefficient is observed between IWV and surface temperature over two years.But the coefficient becomes negative when only summer monsoon months(June,July,August,and September)are considered.Rainfall during these months cools down the surface and could be the reason for this change in the correlation coefficient.Correlation studies between IWV-precipitation,IWVprecipitation efficiency(P.E),and precipitation-P.E show that coefficients are-0.05,-0.10 and 0.983 with 95%confidence level respectively,which proves that the efficacy of rain does not depend only on the level of water vapor.A proper dynamic mechanism is necessary to convert water vapor into the rain.The diurnal variations of IWV during active and break spells have been analyzed.The amplitudes of diurnal oscillation and its harmonics of individual spell do not show clear trends but the mean amplitudes of the break spells are approximately double than those of the active spells.The amplitudes of diurnal,semidiurnal and ter-diurnal components during break spells are 1.08 kg/m^(2),0.52 kg/m;and 0.34 kg/m;respectively.The corresponding amplitudes during active spells are 0.68 kg/m^(2),0.41 kg/m;and 0.23 kg/m;.
基金supported by the Natural Science Foundation of Hainan Province,China(420QN258)the National Natural Science Foundation of China(41630859,41761004).
文摘Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles.
文摘The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
文摘In this paper, some features of cloud liquid water content with respect to rain and water vapor are presented. Cloud liquid water density profile is obtained from radiosonde observation with Salonen's model and Karsten's model at Kolkata, a tropical location in the Indian region. Cloud liquid water contents (LWC) are obtained from these profiles which show a prominent seasonal variation. The monsoon months exhibit much higher values of LWC than in other months. However Salonen's model yields higher LWC values than that obtained with Karsten's model. The variation of daily total rainfall with LWC shows a positive relationship indicating the role of LWC in controlling the rainfall. Also the variation pattern of LWC with integrated water vapor (IWV) content of the atmosphere indicates that a threshold value of water vapor is required for cloud to form and once cloud is formed LWC increases with IWV.
文摘基于德国RPG公司研制的14通道地基微波辐射计(RPG-HATRPO-G3)反演的2014年10月至2015年9月济南地区的水汽和液态水产品,分析了济南地区水汽和云液态水不同季节的月变化、日变化特征及其在强对流天气与小雨天气中的变化趋势。结果表明:2014年10月至2015年9月济南地区柱大气积分水汽量(Integrated Water Vapour,IWV)具有明显的月变化特征,其变化趋势与多年(1981—2010年)月平均降水量相关性较好,IWV夏季最高、冬季最低,四季IWV均具有弱的日变化特征,四季IWV标准偏差按照夏季、秋季、春季、冬季的顺序递减。对于济南地区春季、夏季、秋季3个季节有云无雨和降水前后液态水路径(Liquid Water Path,LWP)的数据,春季LWP可用数据量最少,夏季LWP可用数据量最多;月LWP在0—200 g·m^(-2)范围内的数据占总数据的比例最多,LWP数值越大,其所占比例越小。月LWP大于1000 g·m^(-2)数据的比例随着夏季的临近和降水量的逐渐增加也呈增加的趋势。IWV和LWP在强对流过程发生前均明显增长,数值大于1000 g·m^(-2)的LWP数据比例为53.41%;而小雨天气发生前IWV呈波动上升的趋势,LWP仅在临近降水时才明显增大,LWP数值主要分布在0—200 g·m^(-2)之间,占总数据的比例为86.56%。