A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant sto...A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant storage module is designed. It utilizes the high hydrostatic pressure in deep ocean to drive water into the module to generate negative pressure for bucket suction. This work aims to further approve the feasibility of the concept design in the aspect of penetration installation and the uplift force in-place. Seepage is generated during suction penetration, and can have both positive and negative effects on penetration process. To study the effect of seepage on the penetration process of the integrated suction foundation, finite element analysis(FEA) is carried out in this work. In particular, an improved methodology to calculate the penetration resistance is proposed for the integrated suction foundation with respect to the reduction factor of penetration resistance. The maximum allowable negative pressure during suction penetration is calculated with the critical hydraulic gradient method through FEA. The simulation results of the penetration process show that the integrated suction foundation can be installed safely. Moreover, the uplift resistance of the integrated suction foundation is calculated and the feasibility of the integrated suction foundation working on-site is verified. In all, the analysis in this work further approves the feasibility of the integrated suction foundation for TLPs in deep ocean applications.展开更多
The prediction accuracy of existing models of the rolling force of a thick plate is always very low.To address this problem,a high-precision genetic algorithm-backpropagation network(GA-BP)model of deformation resista...The prediction accuracy of existing models of the rolling force of a thick plate is always very low.To address this problem,a high-precision genetic algorithm-backpropagation network(GA-BP)model of deformation resistance was built,and its integration with the traditional fitted model was further established.Then,a novel rolling force model was obtained by embedding the integration model of deformation resistance in the original model of rolling force.According to this research idea,the industrial data are normalized at first.On this basis,the interactions among the process parameters were disclosed through the variance analysis,and then described by various virtual factors.These factors are set as part of input parameters.Then,the optimal structure of the GA-BP model of deformation resistance was determined and an integration model of deformation resistance was built.Finally,a novel rolling force model is obtained by substituting the traditional fitted deformation resistance into the Sims model with the integration model of the deformation resistance.The results proves that the introduction of virtual factors can increase the hit rate of±5%from 75.8%to 78%and can reduce the root mean square error from 4.72%to 4.48%.Besides,it is found that the mean relative error of the traditional fitted deformation resistance is 0.142,while that of the modified deformation resistance is only 0.03.In addition,the mean relative error in the original rolling force model is 0.145,while that of the present model is only 0.03.展开更多
As technology node shrinks, aggressive design rules for contact and other back end of line(BEOL)layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the m...As technology node shrinks, aggressive design rules for contact and other back end of line(BEOL)layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator(FlexRay) and Tachyon SMO(Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.展开更多
基金financially supported by the National Basic Key Research Program of China(973 Program,Grant No.2014CB46804)the Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.15JCYBJC21700)
文摘A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant storage module is designed. It utilizes the high hydrostatic pressure in deep ocean to drive water into the module to generate negative pressure for bucket suction. This work aims to further approve the feasibility of the concept design in the aspect of penetration installation and the uplift force in-place. Seepage is generated during suction penetration, and can have both positive and negative effects on penetration process. To study the effect of seepage on the penetration process of the integrated suction foundation, finite element analysis(FEA) is carried out in this work. In particular, an improved methodology to calculate the penetration resistance is proposed for the integrated suction foundation with respect to the reduction factor of penetration resistance. The maximum allowable negative pressure during suction penetration is calculated with the critical hydraulic gradient method through FEA. The simulation results of the penetration process show that the integrated suction foundation can be installed safely. Moreover, the uplift resistance of the integrated suction foundation is calculated and the feasibility of the integrated suction foundation working on-site is verified. In all, the analysis in this work further approves the feasibility of the integrated suction foundation for TLPs in deep ocean applications.
基金funded by the National Natural Science Foundation of China(Grant Nos.52274388,U1960105 and 52074187)the authors express gratitude to reviewers for precious suggestions.
文摘The prediction accuracy of existing models of the rolling force of a thick plate is always very low.To address this problem,a high-precision genetic algorithm-backpropagation network(GA-BP)model of deformation resistance was built,and its integration with the traditional fitted model was further established.Then,a novel rolling force model was obtained by embedding the integration model of deformation resistance in the original model of rolling force.According to this research idea,the industrial data are normalized at first.On this basis,the interactions among the process parameters were disclosed through the variance analysis,and then described by various virtual factors.These factors are set as part of input parameters.Then,the optimal structure of the GA-BP model of deformation resistance was determined and an integration model of deformation resistance was built.Finally,a novel rolling force model is obtained by substituting the traditional fitted deformation resistance into the Sims model with the integration model of the deformation resistance.The results proves that the introduction of virtual factors can increase the hit rate of±5%from 75.8%to 78%and can reduce the root mean square error from 4.72%to 4.48%.Besides,it is found that the mean relative error of the traditional fitted deformation resistance is 0.142,while that of the modified deformation resistance is only 0.03.In addition,the mean relative error in the original rolling force model is 0.145,while that of the present model is only 0.03.
文摘As technology node shrinks, aggressive design rules for contact and other back end of line(BEOL)layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator(FlexRay) and Tachyon SMO(Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.