AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-...AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-7721 cells and its contribution to this adhesive course. METHODS: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronous rates of SMMC-7721 cells and expression of integrinβ1 in SMMC-7721 cells were detected by flow cytometer. RESULTS: The percentage of cell cycle phases of general SMMC-7721 cells was 11.01% in G2/M phases, 53.51% in G0/G1 phase, and 35.48% in S phase. The synchronous rates of G1 and S phase SMMC-7721 cells amounted to 74.09% and 98.29%, respectively. The adhesive force of SMMC-7721 cells to endothelial cells changed with the variations of adhesive time and presented behavior characteristics of adhesion and de-adhesion. S phase SMMC-7721 cells had higher adhesive forces than d phase cells [(307.65±92.10)×10-10N vs(195.42±60.72)×10-10N, P<0.01]. The expressive fluorescent intensity of integrinβ1 in G1 phase SMMC-7721 cells was depressed more significantly than the values of S phase and general SMMC-7721cells. The contribution of adhesive integrinβ1 was about 53% in this adhesive course. CONCLUSION: SMMC-7721 cells can be synchronized preferably in d and S phases with thymine-2-deoxyriboside and colchicines. The adhesive molecule integrinβ1 expresses a high level in SMMC-7721 cells and shows differences in various cell cycles, suggesting integrin β1 plays an important role in adhesion to endothelial cells. The change of adhesive forces in different cell cycle SMMC-7721 cells indicates that S phase cells play predominant roles possibly while they interact with endothelial cells.展开更多
基金Supported by the National Natural Science Foundation of China, No.19972077 and No.10372121
文摘AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-7721 cells and its contribution to this adhesive course. METHODS: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronous rates of SMMC-7721 cells and expression of integrinβ1 in SMMC-7721 cells were detected by flow cytometer. RESULTS: The percentage of cell cycle phases of general SMMC-7721 cells was 11.01% in G2/M phases, 53.51% in G0/G1 phase, and 35.48% in S phase. The synchronous rates of G1 and S phase SMMC-7721 cells amounted to 74.09% and 98.29%, respectively. The adhesive force of SMMC-7721 cells to endothelial cells changed with the variations of adhesive time and presented behavior characteristics of adhesion and de-adhesion. S phase SMMC-7721 cells had higher adhesive forces than d phase cells [(307.65±92.10)×10-10N vs(195.42±60.72)×10-10N, P<0.01]. The expressive fluorescent intensity of integrinβ1 in G1 phase SMMC-7721 cells was depressed more significantly than the values of S phase and general SMMC-7721cells. The contribution of adhesive integrinβ1 was about 53% in this adhesive course. CONCLUSION: SMMC-7721 cells can be synchronized preferably in d and S phases with thymine-2-deoxyriboside and colchicines. The adhesive molecule integrinβ1 expresses a high level in SMMC-7721 cells and shows differences in various cell cycles, suggesting integrin β1 plays an important role in adhesion to endothelial cells. The change of adhesive forces in different cell cycle SMMC-7721 cells indicates that S phase cells play predominant roles possibly while they interact with endothelial cells.