BACKGROUND Currently,intrahepatic cholangiocarcinoma(ICC)poses a continuing,significant health challenge,but the relationship has yet to be established between ICC and the proteasome 26S subunit non-ATPase 6(PSMD6).AI...BACKGROUND Currently,intrahepatic cholangiocarcinoma(ICC)poses a continuing,significant health challenge,but the relationship has yet to be established between ICC and the proteasome 26S subunit non-ATPase 6(PSMD6).AIM To investigate the protein expression and clinicopathological significance of PSMD6 in ICC.METHODS The potential impact of the PSMD6 gene on the growth of ICC cell lines was analyzed using clustered regularly interspaced short palindromic repeat knockout screening technology.Forty-two paired specimens of ICC and adjacent noncancerous tissues were collected.PSMD6 protein expression was determined by immunohistochemistry.Receiver operating characteristic curve analysis was performed to validate PSMD6 expression level,and its association with ICC patients’various clinicopathological characteristics was investigated.RESULTS The PSMD6 gene was found to be essential for the growth of ICC cell lines.PSMD6 protein was significantly overexpressed in ICC tissues(P<0.001),but showed no significant association with patient age,gender,pathological grade,or tumor-node-metastasis stage(P>0.05).CONCLUSION PSMD6 can promote the growth of ICC cells,thus playing a pro-oncogenic role.展开更多
In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a smal...In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents.Thus,there has been a sustained search for novel molecular targets for iCCA.The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6(PSMD6),a 19S regulatory subunit of the proteasome,in human iCCA cells and specimens.The authors employed clustered regularly interspaced short palindromic repeat(CRISPR)knockout screening technology integrated with the computational CERES algorithm,and analyzed the human protein atlas(THPA)database and tissue microarrays.The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines,and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters.The authors conclude that PSMD6 may play a promoting role in iCCA.The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening,in vivo experiments,and a discussion of plausible mechanistic cues,which,therefore,dampen the significance of the results.Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA.In addition,the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA,development of proteasome inhibitors for cancer therapy,and advantages of CRISPR screening technology,computational methods,and THPA database as experimental tools for fighting cancer.We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.展开更多
There is currently no effective targeted therapeutic strategy for the treatment of central nervous system acute lymphoblastic leukemia(CNS-ALL).Integrinα6 is considered a potential target for CNS-ALL diagnosis and th...There is currently no effective targeted therapeutic strategy for the treatment of central nervous system acute lymphoblastic leukemia(CNS-ALL).Integrinα6 is considered a potential target for CNS-ALL diagnosis and therapy because of its role in promoting CNS-ALL disease progression.The targeted peptide D(RWYD)(abbreviated RD),with nanomolar affinity to integrinα6 was identified by peptide scanning techniques such as alanine scanning,truncation,and D-substitution.Herein,we developed a therapeutic nanoparticle based on the integrinα6-targeted peptide for treating CNS-ALL.The self-assembled proapoptotic nanopeptide_(D)(RWYD)-_(D)(KLAKLAK)_(2)-G_(D)(FFY)(abbreviated RD-KLA-Gffy)contains the integrinα6-targeted peptide RD,the well-known proapoptotic peptide_(D)(KLAKLAK)_(2)(abbreviated KLA),and the self-assembling tetrapeptide GD(FFY)(abbreviated Gffy).The functional mechanism of RD-KLA-Gffy is clarified using different experiments.Our results demonstrate that RD-KLA-Gffy is highly enriched in CNS-ALL lesions and induces tumor cell apoptosis,thus reducing CNS-ALL disease burden and prolonging the survival of CNS-ALL mice without obvious toxicity.Moreover,the combined use of RD-KLA-Gffy and methotrexate(MTX)shows a potent antitumor effect in treating CNS-ALL,indicating that RD-KLA-Gffy plays an important role in suppressing CNS-ALL progression either as a single agent or in combination with MTX,which shows promise for application in CNS-ALL therapy.展开更多
Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibi...Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibit cell motility in malignant tumors,including breast cancer.However,the specific targets and the corresponding mechanism of its function remain unclear.Methods:In this study,we employed(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)(MTS)assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro.RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC.Finally,confirmed the predicted important signaling pathways through RT-qPCR and western blotting.Results:In this study,we found that KBU2046 functioned as a novel transforming growth factor-β(TGF-β1)inhibitor,effectively suppressing tumor cell motility in vitro.Mechanistically,it directly down-regulated leucine-rich repeat-containing 8 family,member E(LRRC8E),latent TGFβ-binding protein 3(LTBP3),dynein light chain 1(DNAL1),and MAF family of bZIP transcription factors(MAFF)genes,along with reduced protein expression of the integrin family.Additionally,KBU2046 decreased phosphorylation levels of Raf and ERK.This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.Conclusions:In summary,these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC.Furthermore,our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.展开更多
AIM: To investigate the expression of integrin αvβ6 and matrix metalloproteinase 9 (MMP-9), their association with prognostic factors and to assess their predictive role in gastric cancer patie...AIM: To investigate the expression of integrin αvβ6 and matrix metalloproteinase 9 (MMP-9), their association with prognostic factors and to assess their predictive role in gastric cancer patients.METHODS: Immunohistochemistry was used to determine the expressions of integrin αvβ6 and MMP-9 in 126 specimens from patients with primary gastric carcinoma. Associations between immunohistochemical staining and various clinic pathologic variables of tissue specimens were evaluated by the χ<sup>2</sup> test and Fisher’s exact test. Expression correlation of αvβ6 and MMP-9 was assessed using bivariate correlation analysis. The patients were followed-up every 3 mo in the first two years and at least every 6 mo afterwards, with a median follow-up of 56 mo (ranging from 2 mo to 94 mo). Four different combinations of αvβ6 and MMP-9 levels (that is, both markers positive, both markers negative, αvβ6 positive with MMP-9 negative, and αvβ6 negative with MMP-9 positive) were evaluated for their relative effect on survival. The difference in survival curves was evaluated with a log-rank test. Survival analysis was conducted using the Kaplan-Meier survival and Cox proportional hazards model analysis.RESULTS: The expressions of integrin αvβ6 and MMP-9 were investigated in 126 cases, among which 34.92% were positive for αvβ6 expression, and 42.06% for MMP-9 expression. The expression of αvβ6 was associated with Lauren type, differentiation, N stage, and TNM stage (the P values were 0.006, 0.038, 0.016, and 0.002, respectively). While MMP-9 expression was associated with differentiation, T stage, N stage, and TNM stage (the P values were 0.039, 0.014, 0.033, and 0.008, respectively). The positive correlation between αvβ6 and MMP-9 in gastric cancer was confirmed by a correlation analysis. The Kaplan-Meier survival analysis showed that patients with expression of αvβ6 or MMP-9 alone died earlier than those with negative expression and that patients who were both αvβ6 and MMP-9 positive had a shorter overall survival than those with the opposite pattern (both αvβ6 and MMP-9 negative) (P = 0.000). A Cox model indicated that positive expression of αvβ6 and MMP-9, diffuse Lauren type, as well as a senior grade of N stage, M stage, and TNM stage were predictors of a poor prognosis in univariate analysis. Only αvβ6 and MMP-9 retained their significance when adjustments were made for other known prognostic factors in multivariate analysis (RR = 2.632, P = 0.003 and RR = 1.813, P = 0.007).CONCLUSION: The expression of αvβ6 and MMP-9 are closely correlated, and the combinational pattern of αvβ6 and MMP-9 can serve as a more effective prognostic index for gastric cancer patients.展开更多
AIM: To detect the mechanism by which colon tumor escapes the growth constraints imposed on normal cells by cell crowding and dense pericellular matrices.METHODS: An immunohistochemical study of integrin αvβ6 and ma...AIM: To detect the mechanism by which colon tumor escapes the growth constraints imposed on normal cells by cell crowding and dense pericellular matrices.METHODS: An immunohistochemical study of integrin αvβ6 and matrix metalloproteinase-9(MMP-9) was performed on tissue microarrays of 200 spots, including 100 cases of colon tumors. RESULTS: High immunoreactivity for αvβ6(73.7%; 28/38) and MMP-9(76.5%; 52/68) was observed in invasive tumor portions. Furthermore, the effects of integrin αvβ6 on tumor invasive growth in nude mice were detected. Tumor invasive growth and high expression of both αvβ6 and MMP-9 were only seen in tumors resulting from Wi Dr cells expressing αvβ6 in the tumorigenicity assay. Flow cytometry was applied to analyze αvβ6 expression in colon cancer Wi Dr and SW480 cells. The effects of cell density on αvβ6 expression and MMP-9 secretion were also detected by Biotrak MMP-9 activity assay and gelatin zymography assay. High cell density evidently enhanced αvβ6 expression and promoted MMP-9 secretion compared with low density. CONCLUSION: Integrin αvβ6 sustains and promotes tumor invasive growth in tumor progression via a selfperpetuating mechanism. Integrin ανβ6-mediated MMP-9 secretion facilitates pericellular matrix degradation at high cell density, which provides the basis of invasive growth.展开更多
Integrins are a family of transmembrane glycoproteins that mediate cell-cell and cell-extracellular matrix interactions. The integrin α4 subunit is widely expressed by cells from the immune system and its expression ...Integrins are a family of transmembrane glycoproteins that mediate cell-cell and cell-extracellular matrix interactions. The integrin α4 subunit is widely expressed by cells from the immune system and its expression by non-hematopoietic cells is scarce. In the present study, gene and protein expression of this integrin subunit was characterized in proliferating and quiescent human RPE cells. Immunofluorescent studies confirm that the α4 subunit is expressed in vitro by RPE cells, a result that has been validated by immunofluorescence and FACS analyses. The accumulation of the α4 integrin at cell-cell junctions in post-confluent RPE cell cultures negatively correlated with the level of expression of the mRNA transcript. Accordingly, transient transfection analyses reveal that the α4 promoter activity is considerably reduced when RPE cells form a confluent monolayer. Moreover, transfection of recombinant constructs bearing 5’-deletions of the α4 promoter segment allows the localization of strong negative regulatory elements on the -76 to -300 region of the α4 gene suggesting that its expression is intimately linked to the proliferative state of primary cultured RPE cells.展开更多
BACKGROUND The integrinβ6 gene,which is expressed in epithelial cancer,plays a pivotal role in various aspects of cancer progression.The present research for integrinβ6 regulation mainly focuses on the post-transcri...BACKGROUND The integrinβ6 gene,which is expressed in epithelial cancer,plays a pivotal role in various aspects of cancer progression.The present research for integrinβ6 regulation mainly focuses on the post-transcription and translation related regulation mechanism and its role in tumorigenesis.The mechanisms of how the integrinβ6 gene is regulated transcriptionally,and the promoter and transcription factors responsible for basic transcription of integrinβ6 gene remain unknown.AIM To clone and characterize the integrinβ6 promoter.METHODS Software analysis was used to predict the region of integrinβ6 promoter.Luciferase reporter plasmids,which contained the integrinβ6 promoter,were constructed.Element deletion analysis was performed to identify the location of core promoter and binding sites for transcription factors.RESULTS The regulatory elements for the transcription of the integrinβ6 gene were located between-286 and-85 and contained binding sites for transcription factors such as STAT3 and Ets-1.CONCLUSION For the first time,we found the region ofβ6 core promoter and demonstrated the binding sites for transcription factors such as Ets-1 and STAT3,which are important for integrinβ6 promoter transcription activity.These findings are important for investigating the mechanism of integrinβ6 activation in cancer progression.展开更多
The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on...The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on a broad range of host plants,and broad pesticide resistance.These challenges have driven research into developing alternative pest control approaches for WFT.This study analyzed the feasibility of a biological control-based strategy to manage WFT using RNA interference(RNAi)-mediated silencing of WFT endogenous genes.For the delivery of RNAi,we developed transgenic tomato lines expressing double-stranded RNA(dsRNA)of coatomer protein subunit epsilon(CopE)and Toll-like receptor 6(TLR6)from WFT.These genes are involved in critical biological processes of WFT,and their dsRNA can be lethal to these insects when ingested orally.Adult WFT that fed on the transgenic dsRNAexpressing tomato flower stalk showed increased mortality compared with insects that fed on wild-type samples.In addition,WFT that fed on TLR6 and CopE transgenic tomato RNAi lines showed reduced levels of endogenous CopE and TLR6 transcripts,suggesting that their mortality was likely due to RNAi-mediated silencing of these genes.Thus,our findings demonstrate that transgenic tomato plants expressing dsRNA of TLR6 and CopE can be lethal to F.occidentalis,suggesting that these genes may be deployed to control insecticide-resistant WFT.展开更多
BACKGROUND Extensive evidence has illustrated the promotive role of integrin binding sialoprotein(IBSP)in the progression of multiple cancers.However,little is known about the functions of IBSP in gastric cancer(GC)pr...BACKGROUND Extensive evidence has illustrated the promotive role of integrin binding sialoprotein(IBSP)in the progression of multiple cancers.However,little is known about the functions of IBSP in gastric cancer(GC)progression.AIM To investigate the mechanism underlying the regulatory effects of IBSP in GC progression,and the relationship between IBSP and cleavage and polyadenylation factor 6(CPSF6)in this process.METHODS The mRNA and protein expression of relevant genes were assessed through realtime quantitative polymerase chain reaction and Western blot,respectively.Cell viability was evaluated by Cell Counting Kit-8 assay.Cell invasion and migration were evaluated by Transwell assay.Pyroptosis was measured by flow cytometry.The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation(RIP)assays.RESULTS IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines.IBSP knockdown suppressed cell proliferation,migration,and invasion but facilitated pyroptosis.In the exploration of the regulatory mechanism of IBSP,potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0.The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma.Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3’-untranslated region of IBSP and regulates its expression.Knockdown of CPSF6 inhibited cell proliferation,migration,and invasion but boosted pyroptosis.Through rescue assays,it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression.CONCLUSION Our study highlighted the vital role of the CPSF6/IBSP axis in GC,suggesting that IBSP might be an effective biotarget for GC treatment.展开更多
文摘BACKGROUND Currently,intrahepatic cholangiocarcinoma(ICC)poses a continuing,significant health challenge,but the relationship has yet to be established between ICC and the proteasome 26S subunit non-ATPase 6(PSMD6).AIM To investigate the protein expression and clinicopathological significance of PSMD6 in ICC.METHODS The potential impact of the PSMD6 gene on the growth of ICC cell lines was analyzed using clustered regularly interspaced short palindromic repeat knockout screening technology.Forty-two paired specimens of ICC and adjacent noncancerous tissues were collected.PSMD6 protein expression was determined by immunohistochemistry.Receiver operating characteristic curve analysis was performed to validate PSMD6 expression level,and its association with ICC patients’various clinicopathological characteristics was investigated.RESULTS The PSMD6 gene was found to be essential for the growth of ICC cell lines.PSMD6 protein was significantly overexpressed in ICC tissues(P<0.001),but showed no significant association with patient age,gender,pathological grade,or tumor-node-metastasis stage(P>0.05).CONCLUSION PSMD6 can promote the growth of ICC cells,thus playing a pro-oncogenic role.
基金Supported by The National Key Research and Development Program of China,No.2017YFC1308602The Research Funds by the Fifth Affiliated Hospital of Harbin Medical University,No.2022-002 and No.2023-001.
文摘In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology.Drug therapy of intrahepatic cholangiocarcinoma(iCCA)poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents.Thus,there has been a sustained search for novel molecular targets for iCCA.The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6(PSMD6),a 19S regulatory subunit of the proteasome,in human iCCA cells and specimens.The authors employed clustered regularly interspaced short palindromic repeat(CRISPR)knockout screening technology integrated with the computational CERES algorithm,and analyzed the human protein atlas(THPA)database and tissue microarrays.The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines,and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters.The authors conclude that PSMD6 may play a promoting role in iCCA.The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening,in vivo experiments,and a discussion of plausible mechanistic cues,which,therefore,dampen the significance of the results.Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA.In addition,the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA,development of proteasome inhibitors for cancer therapy,and advantages of CRISPR screening technology,computational methods,and THPA database as experimental tools for fighting cancer.We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.
基金supported by grants from the National Natural Science Foundation of China (81972531, 82373175, 82102775, and 82002466)the Major Scientific and Technological Projects of Guangdong Province (2019B020202002)the Young Talents Program of Sun Yat-sen University Cancer Center (YTP-SYSUCC-0067)
文摘There is currently no effective targeted therapeutic strategy for the treatment of central nervous system acute lymphoblastic leukemia(CNS-ALL).Integrinα6 is considered a potential target for CNS-ALL diagnosis and therapy because of its role in promoting CNS-ALL disease progression.The targeted peptide D(RWYD)(abbreviated RD),with nanomolar affinity to integrinα6 was identified by peptide scanning techniques such as alanine scanning,truncation,and D-substitution.Herein,we developed a therapeutic nanoparticle based on the integrinα6-targeted peptide for treating CNS-ALL.The self-assembled proapoptotic nanopeptide_(D)(RWYD)-_(D)(KLAKLAK)_(2)-G_(D)(FFY)(abbreviated RD-KLA-Gffy)contains the integrinα6-targeted peptide RD,the well-known proapoptotic peptide_(D)(KLAKLAK)_(2)(abbreviated KLA),and the self-assembling tetrapeptide GD(FFY)(abbreviated Gffy).The functional mechanism of RD-KLA-Gffy is clarified using different experiments.Our results demonstrate that RD-KLA-Gffy is highly enriched in CNS-ALL lesions and induces tumor cell apoptosis,thus reducing CNS-ALL disease burden and prolonging the survival of CNS-ALL mice without obvious toxicity.Moreover,the combined use of RD-KLA-Gffy and methotrexate(MTX)shows a potent antitumor effect in treating CNS-ALL,indicating that RD-KLA-Gffy plays an important role in suppressing CNS-ALL progression either as a single agent or in combination with MTX,which shows promise for application in CNS-ALL therapy.
基金support from various funding sources,including the National Natural Science Foundation of China(Grant Nos.U21A20415,82002531)Hebei Provincial Key Research Projects(Grant No.223777157D)the Beijing Health Promotion Association,China(2022).
文摘Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibit cell motility in malignant tumors,including breast cancer.However,the specific targets and the corresponding mechanism of its function remain unclear.Methods:In this study,we employed(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)(MTS)assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro.RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC.Finally,confirmed the predicted important signaling pathways through RT-qPCR and western blotting.Results:In this study,we found that KBU2046 functioned as a novel transforming growth factor-β(TGF-β1)inhibitor,effectively suppressing tumor cell motility in vitro.Mechanistically,it directly down-regulated leucine-rich repeat-containing 8 family,member E(LRRC8E),latent TGFβ-binding protein 3(LTBP3),dynein light chain 1(DNAL1),and MAF family of bZIP transcription factors(MAFF)genes,along with reduced protein expression of the integrin family.Additionally,KBU2046 decreased phosphorylation levels of Raf and ERK.This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.Conclusions:In summary,these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC.Furthermore,our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.
基金Supported by China Postdoctoral Science Foundation funded Project,No.20080441310 and 201003781the Natural Science Foundation of China,No.81302123
文摘AIM: To investigate the expression of integrin αvβ6 and matrix metalloproteinase 9 (MMP-9), their association with prognostic factors and to assess their predictive role in gastric cancer patients.METHODS: Immunohistochemistry was used to determine the expressions of integrin αvβ6 and MMP-9 in 126 specimens from patients with primary gastric carcinoma. Associations between immunohistochemical staining and various clinic pathologic variables of tissue specimens were evaluated by the χ<sup>2</sup> test and Fisher’s exact test. Expression correlation of αvβ6 and MMP-9 was assessed using bivariate correlation analysis. The patients were followed-up every 3 mo in the first two years and at least every 6 mo afterwards, with a median follow-up of 56 mo (ranging from 2 mo to 94 mo). Four different combinations of αvβ6 and MMP-9 levels (that is, both markers positive, both markers negative, αvβ6 positive with MMP-9 negative, and αvβ6 negative with MMP-9 positive) were evaluated for their relative effect on survival. The difference in survival curves was evaluated with a log-rank test. Survival analysis was conducted using the Kaplan-Meier survival and Cox proportional hazards model analysis.RESULTS: The expressions of integrin αvβ6 and MMP-9 were investigated in 126 cases, among which 34.92% were positive for αvβ6 expression, and 42.06% for MMP-9 expression. The expression of αvβ6 was associated with Lauren type, differentiation, N stage, and TNM stage (the P values were 0.006, 0.038, 0.016, and 0.002, respectively). While MMP-9 expression was associated with differentiation, T stage, N stage, and TNM stage (the P values were 0.039, 0.014, 0.033, and 0.008, respectively). The positive correlation between αvβ6 and MMP-9 in gastric cancer was confirmed by a correlation analysis. The Kaplan-Meier survival analysis showed that patients with expression of αvβ6 or MMP-9 alone died earlier than those with negative expression and that patients who were both αvβ6 and MMP-9 positive had a shorter overall survival than those with the opposite pattern (both αvβ6 and MMP-9 negative) (P = 0.000). A Cox model indicated that positive expression of αvβ6 and MMP-9, diffuse Lauren type, as well as a senior grade of N stage, M stage, and TNM stage were predictors of a poor prognosis in univariate analysis. Only αvβ6 and MMP-9 retained their significance when adjustments were made for other known prognostic factors in multivariate analysis (RR = 2.632, P = 0.003 and RR = 1.813, P = 0.007).CONCLUSION: The expression of αvβ6 and MMP-9 are closely correlated, and the combinational pattern of αvβ6 and MMP-9 can serve as a more effective prognostic index for gastric cancer patients.
基金Supported by China Postdoctoral Science Foundation,No.20080441310 and No.201003781(partly)
文摘AIM: To detect the mechanism by which colon tumor escapes the growth constraints imposed on normal cells by cell crowding and dense pericellular matrices.METHODS: An immunohistochemical study of integrin αvβ6 and matrix metalloproteinase-9(MMP-9) was performed on tissue microarrays of 200 spots, including 100 cases of colon tumors. RESULTS: High immunoreactivity for αvβ6(73.7%; 28/38) and MMP-9(76.5%; 52/68) was observed in invasive tumor portions. Furthermore, the effects of integrin αvβ6 on tumor invasive growth in nude mice were detected. Tumor invasive growth and high expression of both αvβ6 and MMP-9 were only seen in tumors resulting from Wi Dr cells expressing αvβ6 in the tumorigenicity assay. Flow cytometry was applied to analyze αvβ6 expression in colon cancer Wi Dr and SW480 cells. The effects of cell density on αvβ6 expression and MMP-9 secretion were also detected by Biotrak MMP-9 activity assay and gelatin zymography assay. High cell density evidently enhanced αvβ6 expression and promoted MMP-9 secretion compared with low density. CONCLUSION: Integrin αvβ6 sustains and promotes tumor invasive growth in tumor progression via a selfperpetuating mechanism. Integrin ανβ6-mediated MMP-9 secretion facilitates pericellular matrix degradation at high cell density, which provides the basis of invasive growth.
文摘Integrins are a family of transmembrane glycoproteins that mediate cell-cell and cell-extracellular matrix interactions. The integrin α4 subunit is widely expressed by cells from the immune system and its expression by non-hematopoietic cells is scarce. In the present study, gene and protein expression of this integrin subunit was characterized in proliferating and quiescent human RPE cells. Immunofluorescent studies confirm that the α4 subunit is expressed in vitro by RPE cells, a result that has been validated by immunofluorescence and FACS analyses. The accumulation of the α4 integrin at cell-cell junctions in post-confluent RPE cell cultures negatively correlated with the level of expression of the mRNA transcript. Accordingly, transient transfection analyses reveal that the α4 promoter activity is considerably reduced when RPE cells form a confluent monolayer. Moreover, transfection of recombinant constructs bearing 5’-deletions of the α4 promoter segment allows the localization of strong negative regulatory elements on the -76 to -300 region of the α4 gene suggesting that its expression is intimately linked to the proliferative state of primary cultured RPE cells.
基金Supported by National Sciences Foundation of Shandong Province,No. ZR2014HM101
文摘BACKGROUND The integrinβ6 gene,which is expressed in epithelial cancer,plays a pivotal role in various aspects of cancer progression.The present research for integrinβ6 regulation mainly focuses on the post-transcription and translation related regulation mechanism and its role in tumorigenesis.The mechanisms of how the integrinβ6 gene is regulated transcriptionally,and the promoter and transcription factors responsible for basic transcription of integrinβ6 gene remain unknown.AIM To clone and characterize the integrinβ6 promoter.METHODS Software analysis was used to predict the region of integrinβ6 promoter.Luciferase reporter plasmids,which contained the integrinβ6 promoter,were constructed.Element deletion analysis was performed to identify the location of core promoter and binding sites for transcription factors.RESULTS The regulatory elements for the transcription of the integrinβ6 gene were located between-286 and-85 and contained binding sites for transcription factors such as STAT3 and Ets-1.CONCLUSION For the first time,we found the region ofβ6 core promoter and demonstrated the binding sites for transcription factors such as Ets-1 and STAT3,which are important for integrinβ6 promoter transcription activity.These findings are important for investigating the mechanism of integrinβ6 activation in cancer progression.
基金supported by the Basic Science Research Program through the National Research Foundation(NRF),Ministry of Education,Korea(2021R1I1A1A01041938)a grant from the New Breeding Technologies Development Program,Rural Development Administration,Korea(PJ0165432022)supported in part by the BK21 Plus Program,Ministry of Education,Korea。
文摘The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on a broad range of host plants,and broad pesticide resistance.These challenges have driven research into developing alternative pest control approaches for WFT.This study analyzed the feasibility of a biological control-based strategy to manage WFT using RNA interference(RNAi)-mediated silencing of WFT endogenous genes.For the delivery of RNAi,we developed transgenic tomato lines expressing double-stranded RNA(dsRNA)of coatomer protein subunit epsilon(CopE)and Toll-like receptor 6(TLR6)from WFT.These genes are involved in critical biological processes of WFT,and their dsRNA can be lethal to these insects when ingested orally.Adult WFT that fed on the transgenic dsRNAexpressing tomato flower stalk showed increased mortality compared with insects that fed on wild-type samples.In addition,WFT that fed on TLR6 and CopE transgenic tomato RNAi lines showed reduced levels of endogenous CopE and TLR6 transcripts,suggesting that their mortality was likely due to RNAi-mediated silencing of these genes.Thus,our findings demonstrate that transgenic tomato plants expressing dsRNA of TLR6 and CopE can be lethal to F.occidentalis,suggesting that these genes may be deployed to control insecticide-resistant WFT.
文摘BACKGROUND Extensive evidence has illustrated the promotive role of integrin binding sialoprotein(IBSP)in the progression of multiple cancers.However,little is known about the functions of IBSP in gastric cancer(GC)progression.AIM To investigate the mechanism underlying the regulatory effects of IBSP in GC progression,and the relationship between IBSP and cleavage and polyadenylation factor 6(CPSF6)in this process.METHODS The mRNA and protein expression of relevant genes were assessed through realtime quantitative polymerase chain reaction and Western blot,respectively.Cell viability was evaluated by Cell Counting Kit-8 assay.Cell invasion and migration were evaluated by Transwell assay.Pyroptosis was measured by flow cytometry.The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation(RIP)assays.RESULTS IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines.IBSP knockdown suppressed cell proliferation,migration,and invasion but facilitated pyroptosis.In the exploration of the regulatory mechanism of IBSP,potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0.The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma.Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3’-untranslated region of IBSP and regulates its expression.Knockdown of CPSF6 inhibited cell proliferation,migration,and invasion but boosted pyroptosis.Through rescue assays,it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression.CONCLUSION Our study highlighted the vital role of the CPSF6/IBSP axis in GC,suggesting that IBSP might be an effective biotarget for GC treatment.