Significant developments in colorectal cancer screening are underway and include new screening guidelines that incorporate considerations for patients aged 45 years,with unique features and new techniques at the foref...Significant developments in colorectal cancer screening are underway and include new screening guidelines that incorporate considerations for patients aged 45 years,with unique features and new techniques at the forefront of screening.One of these new techniques is artificial intelligence which can increase adenoma detection rate and reduce the prevalence of colonic neoplasia.展开更多
In artificial intelligence(AI)based-complex power system management and control technology,one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution.However,there is,...In artificial intelligence(AI)based-complex power system management and control technology,one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution.However,there is,currently,nearly no standard technical framework for objective and quantitative intelligence evaluation.In this article,based on a parallel system framework,a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems,by resorting to human intelligence evaluation theories.On this basis,this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning(AutoRL)systems.A parallel system based quantitative assessment and self-evolution(PLASE)system for power grid corrective control AI is thereby constructed,taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results.Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent,and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results,effectively,as well as intuitively improving its intelligence level through selfevolution.展开更多
Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box&q...Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level II or III in the central and southwestern study areas,level IV in the northern region,and level V in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments.展开更多
文摘Significant developments in colorectal cancer screening are underway and include new screening guidelines that incorporate considerations for patients aged 45 years,with unique features and new techniques at the forefront of screening.One of these new techniques is artificial intelligence which can increase adenoma detection rate and reduce the prevalence of colonic neoplasia.
基金supported by the National Key R&D Program of China[grant number 2018AAA0101504]。
文摘In artificial intelligence(AI)based-complex power system management and control technology,one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution.However,there is,currently,nearly no standard technical framework for objective and quantitative intelligence evaluation.In this article,based on a parallel system framework,a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems,by resorting to human intelligence evaluation theories.On this basis,this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning(AutoRL)systems.A parallel system based quantitative assessment and self-evolution(PLASE)system for power grid corrective control AI is thereby constructed,taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results.Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent,and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results,effectively,as well as intuitively improving its intelligence level through selfevolution.
基金Dreams Foundation of Jianghuai Advance Technology Center(No.2023-ZM01D006)National Natural Science Foundation of China(No.62305389)Scientific Research Project of National University of Defense Technology under Grant(22-ZZCX-07)。
文摘Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level II or III in the central and southwestern study areas,level IV in the northern region,and level V in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments.