Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili...Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.展开更多
Skin lesions have become a critical illness worldwide,and the earlier identification of skin lesions using dermoscopic images can raise the survival rate.Classification of the skin lesion from those dermoscopic images...Skin lesions have become a critical illness worldwide,and the earlier identification of skin lesions using dermoscopic images can raise the survival rate.Classification of the skin lesion from those dermoscopic images will be a tedious task.The accuracy of the classification of skin lesions is improved by the use of deep learning models.Recently,convolutional neural networks(CNN)have been established in this domain,and their techniques are extremely established for feature extraction,leading to enhanced classification.With this motivation,this study focuses on the design of artificial intelligence(AI)based solutions,particularly deep learning(DL)algorithms,to distinguish malignant skin lesions from benign lesions in dermoscopic images.This study presents an automated skin lesion detection and classification technique utilizing optimized stacked sparse autoen-coder(OSSAE)based feature extractor with backpropagation neural network(BPNN),named the OSSAE-BPNN technique.The proposed technique contains a multi-level thresholding based segmentation technique for detecting the affected lesion region.In addition,the OSSAE based feature extractor and BPNN based classifier are employed for skin lesion diagnosis.Moreover,the parameter tuning of the SSAE model is carried out by the use of sea gull optimization(SGO)algo-rithm.To showcase the enhanced outcomes of the OSSAE-BPNN model,a comprehensive experimental analysis is performed on the benchmark dataset.The experimentalfindings demonstrated that the OSSAE-BPNN approach outper-formed other current strategies in terms of several assessment metrics.展开更多
A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in re...A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.展开更多
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di...The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.展开更多
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch...This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.展开更多
In this article,we present an application of Adaptive Genetic Algorithm Energy Demand Estimation(AGAEDE) optimal model to improve the efficiency of energy demand prediction.The coefficients of the two forms of the mod...In this article,we present an application of Adaptive Genetic Algorithm Energy Demand Estimation(AGAEDE) optimal model to improve the efficiency of energy demand prediction.The coefficients of the two forms of the model(both linear and quadratic) are optimized by AGA using factors,such as GDP,population,urbanization rate,and R&D inputs together with energy consumption structure,that affect demand.Since the spurious regression phenomenon occurs for a wide range of time series analysis in econometrics,we also discuss this problem for the current artificial intelligence model.The simulation results show that the proposed model is more accurate and reliable compared with other existing methods and the China's energy demand will be 5.23 billion TCE in 2020 according to the average results of the AGAEDE optimal model.Further discussion illustrates that there will be great pressure for China to fulfill the planned goal of controlling energy demand set in the National Energy Demand Project(2014—2020).展开更多
This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning technique...This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method.展开更多
In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,tr...In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods.展开更多
The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circu...The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.展开更多
In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial n...In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.展开更多
Nowadays,quality improvement and increased accessibility to patient data,at a reasonable cost,are highly challenging tasks in healthcare sector.Internet of Things(IoT)and Cloud Computing(CC)architectures are utilized ...Nowadays,quality improvement and increased accessibility to patient data,at a reasonable cost,are highly challenging tasks in healthcare sector.Internet of Things(IoT)and Cloud Computing(CC)architectures are utilized in the development of smart healthcare systems.These entities can support real-time applications by exploiting massive volumes of data,produced by wearable sensor devices.The advent of evolutionary computation algorithms andDeep Learning(DL)models has gained significant attention in healthcare diagnosis,especially in decision making process.Skin cancer is the deadliest disease which affects people across the globe.Automatic skin lesion classification model has a highly important application due to its fine-grained variability in the presence of skin lesions.The current research article presents a new skin lesion diagnosis model i.e.,Deep Learning with Evolutionary Algorithm based Image Segmentation(DL-EAIS)for IoT and cloud-based smart healthcare environments.Primarily,the dermoscopic images are captured using IoT devices,which are then transmitted to cloud servers for further diagnosis.Besides,Backtracking Search optimization Algorithm(BSA)with Entropy-Based Thresholding(EBT)i.e.,BSA-EBT technique is applied in image segmentation.Followed by,Shallow Convolutional Neural Network(SCNN)model is utilized as a feature extractor.In addition,Deep-Kernel Extreme LearningMachine(D-KELM)model is employed as a classification model to determine the class labels of dermoscopic images.An extensive set of simulations was conducted to validate the performance of the presented method using benchmark dataset.The experimental outcome infers that the proposed model demonstrated optimal performance over the compared techniques under diverse measures.展开更多
Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for ...Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for large complicated stampings has been developed based on knowledge based engineering (KBE) and feature technology. This innovative model consists of knowledge base (KB), process control structure (PCS), process information model (PIM), multidisciplinary design optimization (MDO), model link environment (MLE) and simulation engine (SE), to realize process planning, optimization, simulation and management integrated to complete intelligent CAPP system. In this model, KBE provides knowledge base, open architecture and knowledge reuse ability to deal with the multi-domain and multi-expression of process knowledge, and forms an integrated environment. With PIM, all the knowledge consisting of objects, constraints, cxtmricncc and decision-makings is carried by object-oriented method dynamically for knowledge-reasoning. PCS makes dynamical knowledge modified and updated timely and accordingly. MLE provides scv. cral methods to make CAPP sysmm associated and integrated. SE provides a programmable mechanism to interpret simulation course and result. Meanwhile, collaborative optimization, one method of MDO, is imported to deal with the optimization distributed for multiple purposes. All these make CAPP sysmm integrated and open to other systems, such as dic design and manufacturing system.展开更多
Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven deci...Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven decision making and intelligent models,artificial intelligence(AI)and machine learning(ML)models are widely utilized.This article introduces an intelligent feature selection with deep learning based financial risk assessment model(IFSDL-FRA).The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise.In addition,the IFSDL-FRA technique involves the design of new water strider optimization algorithm based feature selection(WSOA-FS)manner to an optimum selection of feature subsets.Moreover,Deep Random Vector Functional Link network(DRVFLN)classification technique was applied to properly allot the class labels to the financial data.Furthermore,improved fruit fly optimization algorithm(IFFOA)based hyperparameter tuning process is carried out to optimally tune the hyperparameters of the DRVFLN model.For enhancing the better performance of the IFSDL-FRA technique,an extensive set of simulations are implemented on benchmark financial datasets and the obtained outcomes determine the betterment of IFSDL-FRA technique on the recent state of art approaches.展开更多
According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and genera...According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.展开更多
In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The mo...In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The model consists of two parts:the setting model based on CBR and the feedback compensation model based on IT2FR.The former presets the value of rehabilitation training program,and the latter carries on the feedback compensation of the preset value.Experimental results show that the average percentage error of two rehabilitation training programs is 0.074%.The two programs are made by the intelligent model and rehabilitation physician.That is,the two different programs are nearly identical.It means that the intelligent model can make a rehabilitation training program effectively and improve the rehabilitation efficiency.展开更多
The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic ...The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic flow analysis,simulation,autonomous vehicle development,etc.Two-dimensional(2D)vehicular movement is basically stochastic and is the result of interactions between a driver's behavior and a vehicle's characteristics.Current microscopic models either neglect 2D noise,or overlook vehicle dynamics.The modeling capabilities,thus,are limited,so that stochastic lateral movement cannot be reproduced.The present research extends an intelligent driver model(IDM)by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model,with vehicle dynamics based on the stochastic differential equation(SDE)theory.Control inputs from the vehicle include the steer rate and longitudinal acceleration,both of which are developed based on an idea from a traditional intelligent driver model.The stochastic stability condition is analyzed on the basis of Lyapunov theory.Numerical analysis is used to assess the two cases:(i)when a vehicle accelerates from a standstill and(ii)when a platoon of vehicles follow a leader with a stop-and-go speed profile,the formation of congestion and subsequent dispersion are simulated.The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement.The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow.展开更多
In recent days,advancements in the Internet of Things(IoT)and cloud computing(CC)technologies have emerged in different application areas,particularly healthcare.The use of IoT devices in healthcare sector often gener...In recent days,advancements in the Internet of Things(IoT)and cloud computing(CC)technologies have emerged in different application areas,particularly healthcare.The use of IoT devices in healthcare sector often generates large amount of data and also spent maximum energy for data transmission to the cloud server.Therefore,energy efficient clustering mechanism is needed to effectively reduce the energy consumption of IoT devices.At the same time,the advent of deep learning(DL)models helps to analyze the healthcare data in the cloud server for decision making.With this motivation,this paper presents an intelligent disease diagnosis model for energy aware cluster based IoT healthcare systems,called IDDM-EAC technique.The proposed IDDM-EAC technique involves a 3-stage process namely data acquisition,clustering,and disease diagnosis.In addition,the IDDM-EAC technique derives a chicken swarm optimization based energy aware clustering(CSOEAC)technique to group the IoT devices into clusters and select cluster heads(CHs).Moreover,a new coyote optimization algorithm(COA)with deep belief network(DBN),called COA-DBN technique is employed for the disease diagnostic process.The COA-DBN technique involves the design of hyperparameter optimizer using COA to optimally adjust the parameters involved in the DBN model.In order to inspect the betterment of the IDDM-EAC technique,a wide range of experiments were carried out using real time data from IoT devices and benchmark data from UCI repository.The experimental results demonstrate the promising performance with the minimal total energy consumption of 63%whereas the EEPSOC,ABC,GWO,and ACO algorithms have showcased a higher total energy consumption of 69%,78%,83%,and 84%correspondingly.展开更多
Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classif...Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%.展开更多
With the rapid development of the internet,smart classroom has become the research interest of modern-day educational informatization.With Tiktok,WeChat,QQ,and other new media,the intelligent teaching model of"ne...With the rapid development of the internet,smart classroom has become the research interest of modern-day educational informatization.With Tiktok,WeChat,QQ,and other new media,the intelligent teaching model of"new media+education" has been derived.The research subject in this study is the economic and management xmdergraduate course,Principles of Economics.In regard to that,it is expounded based on the new media and an intelligent teaching model is designed in line with the development of colleges and universities in the new era to change the plight of the traditional classroom teaching model,stimulate learners'enthusiasm and interest in learning,as well as improve the teaching effect.展开更多
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
文摘Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.
基金University Research Committee fund URC-UJ2019,awarded to Kingsley A.Ogudo.
文摘Skin lesions have become a critical illness worldwide,and the earlier identification of skin lesions using dermoscopic images can raise the survival rate.Classification of the skin lesion from those dermoscopic images will be a tedious task.The accuracy of the classification of skin lesions is improved by the use of deep learning models.Recently,convolutional neural networks(CNN)have been established in this domain,and their techniques are extremely established for feature extraction,leading to enhanced classification.With this motivation,this study focuses on the design of artificial intelligence(AI)based solutions,particularly deep learning(DL)algorithms,to distinguish malignant skin lesions from benign lesions in dermoscopic images.This study presents an automated skin lesion detection and classification technique utilizing optimized stacked sparse autoen-coder(OSSAE)based feature extractor with backpropagation neural network(BPNN),named the OSSAE-BPNN technique.The proposed technique contains a multi-level thresholding based segmentation technique for detecting the affected lesion region.In addition,the OSSAE based feature extractor and BPNN based classifier are employed for skin lesion diagnosis.Moreover,the parameter tuning of the SSAE model is carried out by the use of sea gull optimization(SGO)algo-rithm.To showcase the enhanced outcomes of the OSSAE-BPNN model,a comprehensive experimental analysis is performed on the benchmark dataset.The experimentalfindings demonstrated that the OSSAE-BPNN approach outper-formed other current strategies in terms of several assessment metrics.
基金Supported by the National Talent Fund of the Ministry of Science and Technology of China(20230240011)China University of Geosciences(Wuhan)Research Fund(162301192687)。
文摘A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.
文摘The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.
文摘This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.
基金supported by the Fundamental Research Funds for the Central Universities[Grant No.JBK1507159]
文摘In this article,we present an application of Adaptive Genetic Algorithm Energy Demand Estimation(AGAEDE) optimal model to improve the efficiency of energy demand prediction.The coefficients of the two forms of the model(both linear and quadratic) are optimized by AGA using factors,such as GDP,population,urbanization rate,and R&D inputs together with energy consumption structure,that affect demand.Since the spurious regression phenomenon occurs for a wide range of time series analysis in econometrics,we also discuss this problem for the current artificial intelligence model.The simulation results show that the proposed model is more accurate and reliable compared with other existing methods and the China's energy demand will be 5.23 billion TCE in 2020 according to the average results of the AGAEDE optimal model.Further discussion illustrates that there will be great pressure for China to fulfill the planned goal of controlling energy demand set in the National Energy Demand Project(2014—2020).
基金funded by“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338),。
文摘This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method.
基金This research has been funded by Dirección General de Investigaciones of Universidad Santiago de Cali under call No.01-2021.The authors would like to thank Chennai Institute of Technology for providing us with various resources and unconditional support for carrying out this study.
文摘In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods.
基金Project(2018YFB1600600)supported by the National Key Research and Development Program,ChinaProject(20YJAZH083)supported by the Ministry of Education,China+1 种基金Project(20YJAZH083)supported by the Humanities and Social Sciences,ChinaProject(51878161)supported by the National Natural Science Foundation of China。
文摘The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.
基金Project(2013CB035402) supported by the National Basic Research Program of ChinaProjects(51105048,51209028) supported by the National Natural Science Foundation of China
文摘In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.
文摘Nowadays,quality improvement and increased accessibility to patient data,at a reasonable cost,are highly challenging tasks in healthcare sector.Internet of Things(IoT)and Cloud Computing(CC)architectures are utilized in the development of smart healthcare systems.These entities can support real-time applications by exploiting massive volumes of data,produced by wearable sensor devices.The advent of evolutionary computation algorithms andDeep Learning(DL)models has gained significant attention in healthcare diagnosis,especially in decision making process.Skin cancer is the deadliest disease which affects people across the globe.Automatic skin lesion classification model has a highly important application due to its fine-grained variability in the presence of skin lesions.The current research article presents a new skin lesion diagnosis model i.e.,Deep Learning with Evolutionary Algorithm based Image Segmentation(DL-EAIS)for IoT and cloud-based smart healthcare environments.Primarily,the dermoscopic images are captured using IoT devices,which are then transmitted to cloud servers for further diagnosis.Besides,Backtracking Search optimization Algorithm(BSA)with Entropy-Based Thresholding(EBT)i.e.,BSA-EBT technique is applied in image segmentation.Followed by,Shallow Convolutional Neural Network(SCNN)model is utilized as a feature extractor.In addition,Deep-Kernel Extreme LearningMachine(D-KELM)model is employed as a classification model to determine the class labels of dermoscopic images.An extensive set of simulations was conducted to validate the performance of the presented method using benchmark dataset.The experimental outcome infers that the proposed model demonstrated optimal performance over the compared techniques under diverse measures.
文摘Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for large complicated stampings has been developed based on knowledge based engineering (KBE) and feature technology. This innovative model consists of knowledge base (KB), process control structure (PCS), process information model (PIM), multidisciplinary design optimization (MDO), model link environment (MLE) and simulation engine (SE), to realize process planning, optimization, simulation and management integrated to complete intelligent CAPP system. In this model, KBE provides knowledge base, open architecture and knowledge reuse ability to deal with the multi-domain and multi-expression of process knowledge, and forms an integrated environment. With PIM, all the knowledge consisting of objects, constraints, cxtmricncc and decision-makings is carried by object-oriented method dynamically for knowledge-reasoning. PCS makes dynamical knowledge modified and updated timely and accordingly. MLE provides scv. cral methods to make CAPP sysmm associated and integrated. SE provides a programmable mechanism to interpret simulation course and result. Meanwhile, collaborative optimization, one method of MDO, is imported to deal with the optimization distributed for multiple purposes. All these make CAPP sysmm integrated and open to other systems, such as dic design and manufacturing system.
文摘Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven decision making and intelligent models,artificial intelligence(AI)and machine learning(ML)models are widely utilized.This article introduces an intelligent feature selection with deep learning based financial risk assessment model(IFSDL-FRA).The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise.In addition,the IFSDL-FRA technique involves the design of new water strider optimization algorithm based feature selection(WSOA-FS)manner to an optimum selection of feature subsets.Moreover,Deep Random Vector Functional Link network(DRVFLN)classification technique was applied to properly allot the class labels to the financial data.Furthermore,improved fruit fly optimization algorithm(IFFOA)based hyperparameter tuning process is carried out to optimally tune the hyperparameters of the DRVFLN model.For enhancing the better performance of the IFSDL-FRA technique,an extensive set of simulations are implemented on benchmark financial datasets and the obtained outcomes determine the betterment of IFSDL-FRA technique on the recent state of art approaches.
基金supported by the Military Scentific Research Project(41405030302,41401020301).
文摘According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.
基金Project(2010020176-301)supported by Liaoning Science and Technology Program,ChinaProject(F10-2D5-1-57)supported by Shenyang Municipal Fund,China
文摘In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The model consists of two parts:the setting model based on CBR and the feedback compensation model based on IT2FR.The former presets the value of rehabilitation training program,and the latter carries on the feedback compensation of the preset value.Experimental results show that the average percentage error of two rehabilitation training programs is 0.074%.The two programs are made by the intelligent model and rehabilitation physician.That is,the two different programs are nearly identical.It means that the intelligent model can make a rehabilitation training program effectively and improve the rehabilitation efficiency.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFE0194400)the National Natural Science Foundation of China(Grant Nos.52272314 and 52131202)+1 种基金the Fund for Humanities and Social Science from the Ministry of Education of China(Grant No.21YJCZH116)the Public Welfare Scientific Research Project(Grant No.LGF22E080007)。
文摘The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic flow analysis,simulation,autonomous vehicle development,etc.Two-dimensional(2D)vehicular movement is basically stochastic and is the result of interactions between a driver's behavior and a vehicle's characteristics.Current microscopic models either neglect 2D noise,or overlook vehicle dynamics.The modeling capabilities,thus,are limited,so that stochastic lateral movement cannot be reproduced.The present research extends an intelligent driver model(IDM)by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model,with vehicle dynamics based on the stochastic differential equation(SDE)theory.Control inputs from the vehicle include the steer rate and longitudinal acceleration,both of which are developed based on an idea from a traditional intelligent driver model.The stochastic stability condition is analyzed on the basis of Lyapunov theory.Numerical analysis is used to assess the two cases:(i)when a vehicle accelerates from a standstill and(ii)when a platoon of vehicles follow a leader with a stop-and-go speed profile,the formation of congestion and subsequent dispersion are simulated.The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement.The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow.
基金This research work was funded by Institutional Fund Projects under grant no(IFPHI-050-611-2020)Therefore,authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,Jeddah,Saudi Arabia.
文摘In recent days,advancements in the Internet of Things(IoT)and cloud computing(CC)technologies have emerged in different application areas,particularly healthcare.The use of IoT devices in healthcare sector often generates large amount of data and also spent maximum energy for data transmission to the cloud server.Therefore,energy efficient clustering mechanism is needed to effectively reduce the energy consumption of IoT devices.At the same time,the advent of deep learning(DL)models helps to analyze the healthcare data in the cloud server for decision making.With this motivation,this paper presents an intelligent disease diagnosis model for energy aware cluster based IoT healthcare systems,called IDDM-EAC technique.The proposed IDDM-EAC technique involves a 3-stage process namely data acquisition,clustering,and disease diagnosis.In addition,the IDDM-EAC technique derives a chicken swarm optimization based energy aware clustering(CSOEAC)technique to group the IoT devices into clusters and select cluster heads(CHs).Moreover,a new coyote optimization algorithm(COA)with deep belief network(DBN),called COA-DBN technique is employed for the disease diagnostic process.The COA-DBN technique involves the design of hyperparameter optimizer using COA to optimally adjust the parameters involved in the DBN model.In order to inspect the betterment of the IDDM-EAC technique,a wide range of experiments were carried out using real time data from IoT devices and benchmark data from UCI repository.The experimental results demonstrate the promising performance with the minimal total energy consumption of 63%whereas the EEPSOC,ABC,GWO,and ACO algorithms have showcased a higher total energy consumption of 69%,78%,83%,and 84%correspondingly.
基金the Deanship of Scientific Research at King Khalid University for funding this work underGrant Number(RGP 2/209/42)PrincessNourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R136)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR27).
文摘Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%.
文摘With the rapid development of the internet,smart classroom has become the research interest of modern-day educational informatization.With Tiktok,WeChat,QQ,and other new media,the intelligent teaching model of"new media+education" has been derived.The research subject in this study is the economic and management xmdergraduate course,Principles of Economics.In regard to that,it is expounded based on the new media and an intelligent teaching model is designed in line with the development of colleges and universities in the new era to change the plight of the traditional classroom teaching model,stimulate learners'enthusiasm and interest in learning,as well as improve the teaching effect.