Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
Neuromorphic intelligent hardware technologies have undergone rapid advancement during the past decade,with the goal of building intelligent devices and systems capable of overcoming challenges associated with convent...Neuromorphic intelligent hardware technologies have undergone rapid advancement during the past decade,with the goal of building intelligent devices and systems capable of overcoming challenges associated with conventional hardware.Realization of neuromorphic intelligent hardware depends on major advances in materials science,condensed matter physics,device physics and engineering.As a revolutionary discovery,two-dimensional(2D)materials with atomically-thin thickness and exceptionally high tunability introduce a new physical paradigm and show great promise in the development of intelligent devices.Here,we give prominence to three categories of tunable properties(i.e.,charge carrier,band structure,lattice structure)that are inherent for 2D materials and review their superiorities in constructing intelligent devices particularly in electronics and optoelectronics.Furthermore,we provide insight into how the unique physical mechanisms emerging in 2D materials offer a fertile ground for the design of diverse intelligence devices.展开更多
For a ship in service,seawater corrosion is unavoidable. In order to ensure navigation safety and master the steel plate thickness in service ship,thickness of the ship steel plate must be tested periodically by a sci...For a ship in service,seawater corrosion is unavoidable. In order to ensure navigation safety and master the steel plate thickness in service ship,thickness of the ship steel plate must be tested periodically by a scientific method. After consideration of an actual situation of thickness measurement,the bearing mechanism of ultrasonic thickness meter probe has been designed on the basis of wall-climbing robot,and preliminary experiments have been carried out. The device is mainly used for thickness measurement of a large area of ship hull plate when the docking ship has been sandblasted. Efficiency and safety can be improved to finish thickness measurement by using the device.展开更多
This study focuses on the accuracy of arrhythmia detection by intelligent wearable electrocardiogram(ECG)monitoring devices in asymptomatic myocardial ischemia patients during daily activities.It elaborates on the tec...This study focuses on the accuracy of arrhythmia detection by intelligent wearable electrocardiogram(ECG)monitoring devices in asymptomatic myocardial ischemia patients during daily activities.It elaborates on the technical principles,features,and working modes of such devices and makes a comparison with traditional ECG monitoring methods.Through a well-designed experimental approach involving data collection and analysis using specific evaluation metrics and standards,the accuracy of arrhythmia detection is evaluated.The relationship between arrhythmia and myocardial ischemia is explored,along with its impact on diagnosis,prognosis,and treatment strategy development.The application of these devices in daily activities,including feasibility,compliance,and analysis during different activity states and long-term trends,is also examined.Despite the potential benefits,technical limitations and barriers to clinical acceptance are identified,and future research directions are proposed.The findings contribute to a better understanding of the role and value of intelligent wearable ECG monitoring devices in the management of asymptomatic myocardial ischemia patients.展开更多
With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce ...With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.展开更多
Hip replacement(HA)is mainly indicated for the elderly,who generally suffer from various underlying diseases such as hypertension.This article provides a review of the key points of perioperative nursing care for pati...Hip replacement(HA)is mainly indicated for the elderly,who generally suffer from various underlying diseases such as hypertension.This article provides a review of the key points of perioperative nursing care for patients with hyper-tension undergoing HA.It analyzes the key points of care during the periop-erative period(preoperative,intraoperative,and postoperative)and proposes directions for the development of perioperative nursing care for HA.The pro-gnosis for patients can be improved through the modification of traditional medical approaches and the application of new technologies and concepts.展开更多
As intelligent wearable devices,they will inevitably be subjected to various damages and disturbances from the external environment during daily use.Therefore,it is urgent to develop safeguarding materials with multip...As intelligent wearable devices,they will inevitably be subjected to various damages and disturbances from the external environment during daily use.Therefore,it is urgent to develop safeguarding materials with multiple protective properties.Herein,this work developed a flexible and breathable three-dimensional(3D)porous shear stiffening elastomer(SSE)/MXene(M-SSE)foam with impact/electromagnetic interference(EMI)/bacteria multiple protection performance for intelligent wearable devices.The continuous conductive MXene network in the 3D SSE porous structure made M-SSE foam exhibit excellent electromagnetic interference shielding property with a high shielding effectiveness of 34 dB.Attributed to the shear stiffening effect of porous SSE matrix,M-SSE foam possessed unique anti-impact and protection properties.The energy dissipation rate reached up to more than 85%,illustrating M-SSE foam could effectively attenuate the external impact force and absorb the impact energy.Inherited from the excellent photothermal performance of MXene,M-SSE foam achieved a considerable saturated temperature of 98℃ under 0.57 W/cm^(2) laser power.Therefore,M-SSE foam showed extraordinary antimicrobial property for Staphylococcus aureus according to the principle of photothermal sterilization.Finally,for the development of intelligent wearable devices,conductive MSSE foam could be used as an intelligent sensor to monitor various human movements owing to the highly sensitive property.This work greatly expanded the application prospect of multifunctional protective materials in various complex environments and promoted the development of multifunctional smart wearable devices in protection field.展开更多
As the smart grid concepts are emphasized lately, the need to modernize the power engineering education is also well recognized. This paper presents a set of newly developed modeling, simulation and testing tools aime...As the smart grid concepts are emphasized lately, the need to modernize the power engineering education is also well recognized. This paper presents a set of newly developed modeling, simulation and testing tools aimed at better understanding of the design concept and related applications for protective relaying and substation automation solutions for the smart grid. Since the smart grid applications require integration of data from multiple IEDs (intelligent electronic devices), understanding properties of each IED type in detail, as well as their responses to the power system events is needed. In addition, understanding the communication requirements to perform data integration is also important. To illustrate how the mentioned smart grid issues may be taught, the following advanced teaching approaches are presented: (1) Use of modeling and simulation means to better understand interaction between the relays and power system; (2) Use of IED test facilities to better understand performance of physical devices used for protection, monitoring and control; (3) Utilization of communication network modeling tools to simulate the communication network within SAS (substation automation system). Examples showing the use of proposed techniques for teaching the fundamentals and applications are presented. The examples demonstrate the adequacy and efficiency of the proposed techniques.展开更多
Smart networks such as active distribution network(ADN)and microgrid(MG)play an important role in power system operation.The design and implementation of appropriate protection systems for MG and ADN must be addressed...Smart networks such as active distribution network(ADN)and microgrid(MG)play an important role in power system operation.The design and implementation of appropriate protection systems for MG and ADN must be addressed,which imposes new technical challenges.This paper presents the implementation and validation aspects of an adaptive fault detection strategy based on neural networks(NNs)and multiple sampling points for ADN and MG.The solution is implemented on an edge device.NNs are used to derive a data-driven model that uses only local measurements to detect fault states of the network without the need for communication infrastructure.Multiple sampling points are used to derive a data-driven model,which allows the generalization considering the implementation in physical systems.The adaptive fault detector model is implemented on a Jetson Nano system,which is a single-board computer(SBC)with a small graphic processing unit(GPU)intended to run machine learning loads at the edge.The proposed method is tested in a physical,real-life,low-voltage network located at Universidad del Norte,Colombia.This testing network is based on the IEEE 13-node test feeder scaled down to 220 V.The validation in a simulation environment shows the accuracy and dependability above 99.6%,while the real-time tests show the accuracy and dependability of 95.5%and 100%,respectively.Without hard-to-derive parameters,the easy-to-implement embedded model highlights the potential for real-life applications.展开更多
Based on the standardized cyber-physical modeling and communication system-IEC 61850,this paper establishes the operational control architecture of a low-voltage multi-terminal DC(LV-MTDC)system.The coordinated operat...Based on the standardized cyber-physical modeling and communication system-IEC 61850,this paper establishes the operational control architecture of a low-voltage multi-terminal DC(LV-MTDC)system.The coordinated operational control strategies,including power electronic transformer(PET),and voltage source converter(VSC),are proposed.Then a cyberphysical model of the system based on IEC 61850 is built,according to the application requirements of operational control in the LV-MTDC system.On this basis,the implementation method of system operational control based on IEC 61850 is proposed,including the software/hardware design of the intelligent electronic device(IED),dispatching operations and uninterrupted power supply.The simulation environment is further built to verify the system operational control technology,and the test platform is used to carry out the actual tests.The research results show that the operational control technology for the LV-MTDC system proposed in this paper is feasible,which can guarantee the rapid and accurate information exchange of control commands and settings,and thus effectively realize the operational control of the LV-MTDC system under complex conditions.展开更多
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金supported by the National Natural Science Foundation of China(Grant Nos.62122036,62034004,61921005,61974176,6220411012074176)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220775)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB44000000)the National Key R&D Program of China(Grant Nos.2019YFB2205400,and 2019YFB2205402)the Fundamental Research Funds for the Central Universities(Grant No.020414380179)the support from the AIQ foundation。
文摘Neuromorphic intelligent hardware technologies have undergone rapid advancement during the past decade,with the goal of building intelligent devices and systems capable of overcoming challenges associated with conventional hardware.Realization of neuromorphic intelligent hardware depends on major advances in materials science,condensed matter physics,device physics and engineering.As a revolutionary discovery,two-dimensional(2D)materials with atomically-thin thickness and exceptionally high tunability introduce a new physical paradigm and show great promise in the development of intelligent devices.Here,we give prominence to three categories of tunable properties(i.e.,charge carrier,band structure,lattice structure)that are inherent for 2D materials and review their superiorities in constructing intelligent devices particularly in electronics and optoelectronics.Furthermore,we provide insight into how the unique physical mechanisms emerging in 2D materials offer a fertile ground for the design of diverse intelligence devices.
基金Supported by the National Natural Science Foundation of China(No.51309116)
文摘For a ship in service,seawater corrosion is unavoidable. In order to ensure navigation safety and master the steel plate thickness in service ship,thickness of the ship steel plate must be tested periodically by a scientific method. After consideration of an actual situation of thickness measurement,the bearing mechanism of ultrasonic thickness meter probe has been designed on the basis of wall-climbing robot,and preliminary experiments have been carried out. The device is mainly used for thickness measurement of a large area of ship hull plate when the docking ship has been sandblasted. Efficiency and safety can be improved to finish thickness measurement by using the device.
文摘This study focuses on the accuracy of arrhythmia detection by intelligent wearable electrocardiogram(ECG)monitoring devices in asymptomatic myocardial ischemia patients during daily activities.It elaborates on the technical principles,features,and working modes of such devices and makes a comparison with traditional ECG monitoring methods.Through a well-designed experimental approach involving data collection and analysis using specific evaluation metrics and standards,the accuracy of arrhythmia detection is evaluated.The relationship between arrhythmia and myocardial ischemia is explored,along with its impact on diagnosis,prognosis,and treatment strategy development.The application of these devices in daily activities,including feasibility,compliance,and analysis during different activity states and long-term trends,is also examined.Despite the potential benefits,technical limitations and barriers to clinical acceptance are identified,and future research directions are proposed.The findings contribute to a better understanding of the role and value of intelligent wearable ECG monitoring devices in the management of asymptomatic myocardial ischemia patients.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Projects No.52202012)the National Natural Science Foundation of China(Projects No.51834007)。
文摘With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.
文摘Hip replacement(HA)is mainly indicated for the elderly,who generally suffer from various underlying diseases such as hypertension.This article provides a review of the key points of perioperative nursing care for patients with hyper-tension undergoing HA.It analyzes the key points of care during the periop-erative period(preoperative,intraoperative,and postoperative)and proposes directions for the development of perioperative nursing care for HA.The pro-gnosis for patients can be improved through the modification of traditional medical approaches and the application of new technologies and concepts.
基金Financial supports from the National Natural Science Foundation of China(Nos.12202435,12132016,11972032,and 12072338)the Fundamental Research Funds for the Central Universities(Nos.WK2480000007 and WK5290000003)China Postdoctoral Science Foundation(No.2021M703086)are gratefully acknowledged.
文摘As intelligent wearable devices,they will inevitably be subjected to various damages and disturbances from the external environment during daily use.Therefore,it is urgent to develop safeguarding materials with multiple protective properties.Herein,this work developed a flexible and breathable three-dimensional(3D)porous shear stiffening elastomer(SSE)/MXene(M-SSE)foam with impact/electromagnetic interference(EMI)/bacteria multiple protection performance for intelligent wearable devices.The continuous conductive MXene network in the 3D SSE porous structure made M-SSE foam exhibit excellent electromagnetic interference shielding property with a high shielding effectiveness of 34 dB.Attributed to the shear stiffening effect of porous SSE matrix,M-SSE foam possessed unique anti-impact and protection properties.The energy dissipation rate reached up to more than 85%,illustrating M-SSE foam could effectively attenuate the external impact force and absorb the impact energy.Inherited from the excellent photothermal performance of MXene,M-SSE foam achieved a considerable saturated temperature of 98℃ under 0.57 W/cm^(2) laser power.Therefore,M-SSE foam showed extraordinary antimicrobial property for Staphylococcus aureus according to the principle of photothermal sterilization.Finally,for the development of intelligent wearable devices,conductive MSSE foam could be used as an intelligent sensor to monitor various human movements owing to the highly sensitive property.This work greatly expanded the application prospect of multifunctional protective materials in various complex environments and promoted the development of multifunctional smart wearable devices in protection field.
文摘As the smart grid concepts are emphasized lately, the need to modernize the power engineering education is also well recognized. This paper presents a set of newly developed modeling, simulation and testing tools aimed at better understanding of the design concept and related applications for protective relaying and substation automation solutions for the smart grid. Since the smart grid applications require integration of data from multiple IEDs (intelligent electronic devices), understanding properties of each IED type in detail, as well as their responses to the power system events is needed. In addition, understanding the communication requirements to perform data integration is also important. To illustrate how the mentioned smart grid issues may be taught, the following advanced teaching approaches are presented: (1) Use of modeling and simulation means to better understand interaction between the relays and power system; (2) Use of IED test facilities to better understand performance of physical devices used for protection, monitoring and control; (3) Utilization of communication network modeling tools to simulate the communication network within SAS (substation automation system). Examples showing the use of proposed techniques for teaching the fundamentals and applications are presented. The examples demonstrate the adequacy and efficiency of the proposed techniques.
基金supported by Universidad del Norte,Fondo Nacional de Financiamiento para la Ciencia,la Tecnología e Innovación FCTEI del sistema general de regalías SGR,and Departamento Administrativo de Ciencia,Tecnología e Innovación-COLCIENCIAS(now Colombian Ministry of Science,Technology,and Innovation-Minciencias)by call contest“Convocatoria 757 de 2017”and“Convocatoria 852-Conectando conocimiento de 2019”-Project Integra2023,code 111085271060,contract 80740-774-2020.
文摘Smart networks such as active distribution network(ADN)and microgrid(MG)play an important role in power system operation.The design and implementation of appropriate protection systems for MG and ADN must be addressed,which imposes new technical challenges.This paper presents the implementation and validation aspects of an adaptive fault detection strategy based on neural networks(NNs)and multiple sampling points for ADN and MG.The solution is implemented on an edge device.NNs are used to derive a data-driven model that uses only local measurements to detect fault states of the network without the need for communication infrastructure.Multiple sampling points are used to derive a data-driven model,which allows the generalization considering the implementation in physical systems.The adaptive fault detector model is implemented on a Jetson Nano system,which is a single-board computer(SBC)with a small graphic processing unit(GPU)intended to run machine learning loads at the edge.The proposed method is tested in a physical,real-life,low-voltage network located at Universidad del Norte,Colombia.This testing network is based on the IEEE 13-node test feeder scaled down to 220 V.The validation in a simulation environment shows the accuracy and dependability above 99.6%,while the real-time tests show the accuracy and dependability of 95.5%and 100%,respectively.Without hard-to-derive parameters,the easy-to-implement embedded model highlights the potential for real-life applications.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21050100)the Youth Innovation Promotion Association CAS(2018170)Key Front Science Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC024).
文摘Based on the standardized cyber-physical modeling and communication system-IEC 61850,this paper establishes the operational control architecture of a low-voltage multi-terminal DC(LV-MTDC)system.The coordinated operational control strategies,including power electronic transformer(PET),and voltage source converter(VSC),are proposed.Then a cyberphysical model of the system based on IEC 61850 is built,according to the application requirements of operational control in the LV-MTDC system.On this basis,the implementation method of system operational control based on IEC 61850 is proposed,including the software/hardware design of the intelligent electronic device(IED),dispatching operations and uninterrupted power supply.The simulation environment is further built to verify the system operational control technology,and the test platform is used to carry out the actual tests.The research results show that the operational control technology for the LV-MTDC system proposed in this paper is feasible,which can guarantee the rapid and accurate information exchange of control commands and settings,and thus effectively realize the operational control of the LV-MTDC system under complex conditions.