期刊文献+
共找到264,241篇文章
< 1 2 250 >
每页显示 20 50 100
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
1
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 PRIVACY-PRESERVING intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning
2
作者 Jishun Ou Jingyuan Li +2 位作者 Chen Wang Yun Wang Qinghui Nie 《Digital Transportation and Safety》 2024年第3期126-143,I0001,I0002,共20页
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud... Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications. 展开更多
关键词 Traffic flow forecasting Interpretable machine learning INTERPRETABILITY Ensemble trees intelligent transportation systems
下载PDF
Review of Key Technologies and Applications in Intelligent Transportation Systems
3
作者 Hanlou Diao Wei Shen 《Journal of Architectural Research and Development》 2024年第6期76-82,共7页
The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the c... The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the concept and overall framework of smart transportation.It emphasizes the application of key technologies,including Traffic Element Identification and Perception,data mining,and Smart Transportation System Integration Technology,in the field.Furthermore,the paper elucidates the current practical applications of smart transportation,showcasing its advancements and implementations in real-world scenarios. 展开更多
关键词 Smart city intelligent transportation Smart bus Smart parking
下载PDF
ET-Net:A Novel Framework for Fine-Grained Traffic Classification in Intelligent Vehicle Applications
4
作者 Wei Wenjie Ji Nan +1 位作者 Gao Feiran Lin Fuhong 《China Communications》 2025年第1期265-276,共12页
Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,... Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,traffic classification is vital for promptly overseeing and controlling applications with sensitive information.In this paper,we propose ETNet,a framework that combines multiple features and leverages self-attention mechanisms to learn deep relationships between packets.ET-Net employs a multisimilarity triplet network to extract features from raw bytes,and exploits self-attention to capture long-range dependencies within packets in a session and contextual information features.Additionally,we utilizing the loss function to more effectively integrate information acquired from both byte sequences and their corresponding lengths.Through simulated evaluations on datasets with similar attributes,ET-Net demonstrates the ability to finely distinguish between nine categories of applications,achieving superior results compared to existing methods. 展开更多
关键词 attention mechanism encrypted traffic classification intelligent vehicles privacy and security
下载PDF
Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN
5
作者 Yufan Gao Fei Yin +5 位作者 Chen Hong Xiangfu Chen Hang Deng Yongjian Liu Zhenyu Li Qing Yao 《Journal of Integrative Agriculture》 2025年第1期220-234,共15页
Cruciferous vegetables are important edible vegetable crops.However,they are susceptible to various pests during their growth process,which requires real-time and accurate monitoring of these pests for pest forecastin... Cruciferous vegetables are important edible vegetable crops.However,they are susceptible to various pests during their growth process,which requires real-time and accurate monitoring of these pests for pest forecasting and scientific control.Hanging yellow sticky boards is a common way to monitor and trap those pests which are attracted to the yellow color.To achieve real-time,low-cost,intelligent monitoring of these vegetable pests on the boards,we established an intelligent monitoring system consisting of a smart camera,a web platform and a pest detection algorithm deployed on a server.After the operator sets the monitoring preset points and shooting time of the camera on the system platform,the camera in the field can automatically collect images of multiple yellow sticky boards at fixed places and times every day.The pests trapped on the yellow sticky boards in vegetable fields,Plutella xylostella,Phyllotreta striolata and flies,are very small and susceptible to deterioration and breakage,which increases the difficulty of model detection.To solve the problem of poor recognition due to the small size and breaking of the pest bodies,we propose an intelligent pest detection algorithm based on an improved Cascade R-CNN model for three important cruciferous crop pests.The algorithm uses an overlapping sliding window method,an improved Res2Net network as the backbone network,and a recursive feature pyramid network as the neck network.The results of field tests show that the algorithm achieves good detection results for the three target pests on the yellow sticky board images,with precision levels of 96.5,92.2 and 75.0%,and recall levels of 96.6,93.1 and 74.7%,respectively,and an F_(1) value of 0.880.Compared with other algorithms,our algorithm has a significant advantage in its ability to detect small target pests.To accurately obtain the data for the newly added pests each day,a two-stage pest matching algorithm was proposed.The algorithm performed well and achieved results that were highly consistent with manual counting,with a mean error of only 2.2%.This intelligent monitoring system realizes precision,good visualization,and intelligent vegetable pest monitoring,which is of great significance as it provides an effective pest prevention and control option for farmers. 展开更多
关键词 vegetable pests yellow sticky boards intelligent monitoring system deep learning pest detection
下载PDF
Design and Application of Intelligent Control System for Molten Iron Transportation Based on 5G Technology
6
作者 Borui Wang 《Frontiers of Metallurgical Industry》 2024年第2期21-24,共4页
Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control ... Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost. 展开更多
关键词 5G technology molten iron transportation intelligent control system
下载PDF
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception 被引量:4
7
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor Tactile perception Multimodal machine learning algorithms Universal tactile system intelligent object recognition
下载PDF
Cyber-physical-social System in Intelligent Transportation 被引量:14
8
作者 Gang Xiong Fenghua Zhu +4 位作者 Xiwei Liu Xisong Dong Wuling Huang Songhang Chen Kai Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期320-333,共14页
A cyber-physical system (CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels. CPS is helpful to improve the controllability, efficiency and reliabi... A cyber-physical system (CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels. CPS is helpful to improve the controllability, efficiency and reliability of a physical system, such as vehicle collision avoidance and zero-net energy buildings systems. It has become a hot R&D and practical area from US to EU and other countries. In fact, most of physical systems and their cyber systems are designed, built and used by human beings in the social and natural environments. So, social systems must be of the same importance as their CPSs. The indivisible cyber, physical and social parts constitute the cyber-physical-social system (CPSS), a typical complex system and it's a challengeable problem to control and manage it under traditional theories and methods. An artificial systems, computational experiments and parallel execution (ACP) methodology is introduced based on which data-driven models are applied to social system. Artificial systems, i.e., cyber systems, are applied for the equivalent description of physical-social system (PSS). Computational experiments are applied for control plan validation. And parallel execution finally realizes the stepwise control and management of CPSS. Finally, a CPSS-based intelligent transportation system (ITS) is discussed as a case study, and its architecture, three parts, and application are described in detail. © 2014 Chinese Association of Automation. 展开更多
关键词 Amphibious vehicles Complex networks Embedded systems intelligent systems transportATION
下载PDF
Authentication of Vehicles and Road Side Units in Intelligent Transportation System 被引量:3
9
作者 Muhammad Waqas Shanshan Tu +5 位作者 Sadaqat Ur Rehman Zahid Halim Sajid Anwar Ghulam Abbas Ziaul Haq Abbas Obaid Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2020年第7期359-371,共13页
Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and ... Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility. 展开更多
关键词 intelligent transportation system AUTHENTICATION rogue attack
下载PDF
YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security 被引量:2
10
作者 Fares Alharbi Reem Alshahrani +2 位作者 Mohammed Zakariah Amjad Aldweesh Abdulrahman Abdullah Alghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3697-3722,共26页
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless... Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes. 展开更多
关键词 intelligent transportation system blockchain technology license plate recognition PRIVACY YOLO deep learning technique ALPR
下载PDF
Cooperative User-Scheduling and Resource Allocation Optimization for Intelligent Reflecting Surface Enhanced LEO Satellite Communication 被引量:1
11
作者 Meng Meng Bo Hu +1 位作者 Shanzhi Chen Jianyin Zhang 《China Communications》 SCIE CSCD 2024年第2期227-244,共18页
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate... Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput. 展开更多
关键词 convex optimization intelligent reflecting surface LEO satellite communication OFDM
下载PDF
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm 被引量:1
12
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 intelligent drilling Closed-loop drilling Lithology identification Random forest algorithm Feature extraction
下载PDF
Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems 被引量:1
13
作者 Yuzhou Li Chuanxia Sun Yinglei Hu 《Computers, Materials & Continua》 SCIE EI 2023年第5期3497-3515,共19页
Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification sy... Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification system propels the need for understanding the root causes of automobile accidents.Also,in the case of insurance,it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing.It is observed that drivers with frequent records of paying“fines”are compelled to pay higher insurance payments than drivers without any penalty records.Thus driver identification act as an important information source for the intelligent transport system.This study focuses on a similar objective to implement a machine learning-based approach for driver identification.Raw data is collected from in-vehicle sensors using the controller area network(CAN)and then converted to binary form using a one-hot encoding technique.Then,the transformed data is dimensionally reduced using the Principal Component Analysis(PCA)technique,and further optimal parameters from the dataset are selected using Whale Optimization Algorithm(WOA).The most relevant features are selected and then fed into a Convolutional Neural Network(CNN)model.The proposed model is evaluated against four different use cases of driver behavior.The results show that the best prediction accuracy is achieved in the case of drivers without glasses.The proposed model yielded optimal accuracy when evaluated against the K-Nearest Neighbors(KNN)and Support Vector Machines(SVM)models with and without using dimensionality reduction approaches. 展开更多
关键词 Driver identification intelligent transport system PCA WOA CNN
下载PDF
Internet of Things Based Solutions for Transport Network Vulnerability Assessment in Intelligent Transportation Systems 被引量:1
14
作者 Weiwei Liu Yang Tang +3 位作者 Fei Yang Chennan Zhang Dun Cao Gwang-jun Kim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2511-2527,共17页
Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulner... Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals. 展开更多
关键词 Internet of Things intelligent transport Systems vulnerability assessment transport network
下载PDF
Ensuring Secure Platooning of Constrained Intelligent and Connected Vehicles Against Byzantine Attacks:A Distributed MPC Framework 被引量:1
15
作者 Henglai Wei Hui Zhang +1 位作者 Kamal AI-Haddad Yang Shi 《Engineering》 SCIE EI CAS CSCD 2024年第2期35-46,共12页
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram... This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings. 展开更多
关键词 Model predictive control Resilient control Platoon control intelligent and connected vehicle Byzantine attacks
下载PDF
An Optimal Deep Learning for Cooperative Intelligent Transportation System 被引量:1
16
作者 K.Lakshmi Srinivas Nagineni +4 位作者 E.Laxmi Lydia A.Francis Saviour Devaraj Sachi Nandan Mohanty Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第7期19-35,共17页
Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a ma... Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a massive quantity of data comprising both mobility and service-related data.For the extraction of meaningful and related details out of the generated data,data science acts as an essential part of the upcoming C-ITS applications.At the same time,prediction of short-term traffic flow is highly essential to manage the traffic accurately.Due to the rapid increase in the amount of traffic data,deep learning(DL)models are widely employed,which uses a non-parametric approach for dealing with traffic flow forecasting.This paper focuses on the design of intelligent deep learning based short-termtraffic flow prediction(IDL-STFLP)model for C-ITS that assists the people in various ways,namely optimization of signal timing by traffic signal controllers,travelers being able to adapt and alter their routes,and so on.The presented IDLSTFLP model operates on two main stages namely vehicle counting and traffic flow prediction.The IDL-STFLP model employs the Fully Convolutional Redundant Counting(FCRC)based vehicle count process.In addition,deep belief network(DBN)model is applied for the prediction of short-term traffic flow.To further improve the performance of the DBN in traffic flow prediction,it will be optimized by Quantum-behaved bat algorithm(QBA)which optimizes the tunable parameters of DBN.Experimental results based on benchmark dataset show that the presented method can count vehicles and predict traffic flowin real-time with amaximumperformance under dissimilar environmental situations. 展开更多
关键词 Cooperative intelligent transportation systems traffic flow prediction deep belief network deep learning vehicle counting
下载PDF
Intelligent diagnosis of retinal vein occlusion based on color fundus photographs 被引量:1
17
作者 Yu-Ke Ji Rong-Rong Hua +3 位作者 Sha Liu Cui-Juan Xie Shao-Chong Zhang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期1-6,共6页
AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally ... AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients. 展开更多
关键词 deep learning artificial intelligence Swin Transformer diagnostic model retinal vein occlusion color fundus photographs
下载PDF
Short-term effectiveness of intelligent navigated laser photocoagulation versus subthreshold micropulse laser in patients with chronic central serous chorioretinopathy 被引量:1
18
作者 Fen Zhou Cheng-Hu Wang +3 位作者 Chen-Chen Zhou Sha Liu Jin Yao Qin Jiang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第11期2045-2051,共7页
AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHOD... AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term. 展开更多
关键词 intelligent navigated laser photocoagulation subthreshold micropulse laser central serous chorioretinopathy optical coherence tomography
下载PDF
Research on Intelligent Transportation System and Its Key Technology based on IOT 被引量:1
19
作者 Xinghua HUANG 《International Journal of Technology Management》 2015年第5期22-24,共3页
This paper presents a design scheme of intelligent transportation system based on the Internet of things. First, the paper elaborated the related technical and functional demand of intelligent traffic system, designed... This paper presents a design scheme of intelligent transportation system based on the Internet of things. First, the paper elaborated the related technical and functional demand of intelligent traffic system, designed the gateway level model and the overall project. Then, we design gateway hardware circuit according to the overall plan, and design the gateway application software according to the functional requirements. Through the experiment and simulation results show that, the intelligent transportation system gateway based on Internet of things is ability to create ZigBee network through the way of wireless access, GPRS network, Ethernet access based on the wired way, to realizes multimode access, multi-protocol conversion gateway, ad hoc network functions. 展开更多
关键词 Intemet of Things intelligent transportation System ZIGBEE GPRS INTEMET
下载PDF
Introduction to the Special Issue on Machine Learning-Guided Intelligent Modeling with Its Industrial Applications
20
作者 Xiong Luo Yongqiang Cheng Zhifang Liao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期7-11,共5页
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Mac... With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Machine Learning(ML)-based intelligentmodelling has become a newparadigm for solving problems in the industrial domain[1–3].With numerous applications and diverse data types in the industrial domain,algorithmic and data-driven ML techniques can intelligently learn potential correlations between complex data and make efficient decisions while reducing human intervention.However,in real-world application scenarios,existing algorithms may have a variety of limitations,such as small data volumes,small detection targets,low efficiency,and algorithmic gaps in specific application domains[4].Therefore,many new algorithms and strategies have been proposed to address the challenges in industrial applications[5–8]. 展开更多
关键词 intelligENCE bringing intelligent
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部