A new synthetic model of maintenance decision-making, which is made by anartificial neural network (ANN) , expert system (ES) and emulation technology, is put forward. Bymeans of this model all kinds of maintenance re...A new synthetic model of maintenance decision-making, which is made by anartificial neural network (ANN) , expert system (ES) and emulation technology, is put forward. Bymeans of this model all kinds of maintenance resources with low cost can be effectively harmonized;accordingly, the reliability, maintenance efficiency and quality of equipment can be improved, soservice life of equipments is enhanced.展开更多
With the increasing and rapid growth rate of COVID-19 cases,the healthcare scheme of several developed countries have reached the point of collapse.An important and critical steps in fighting against COVID-19 is power...With the increasing and rapid growth rate of COVID-19 cases,the healthcare scheme of several developed countries have reached the point of collapse.An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients,in such a way that positive patient can be treated and isolated.A chest radiology image-based diagnosis scheme might have several benefits over traditional approach.The accomplishment of artificial intelligence(AI)based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems.This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19Monitoring System(IFFA-DTLMS).The proposed IFFADTLMSmodelmajorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs.To attain this,the presented IFFA-DTLMS model primarily applies densely connected networks(DenseNet121)model to generate a collection of feature vectors.In addition,the firefly algorithm(FFA)is applied for the hyper parameter optimization of DenseNet121 model.Moreover,autoencoder-long short term memory(AE-LSTM)model is exploited for the classification and identification of COVID19.For ensuring the enhanced performance of the IFFA-DTLMS model,a wide-ranging experiments were performed and the results are reviewed under distinctive aspects.The experimental value reports the betterment of IFFA-DTLMS model over recent approaches.展开更多
Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,ma...Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain.展开更多
A broad range of companies around the world has welcomed artificial intelligence(AI)technology in daily practices because it provides decision-makers with comprehensive and intuitive messages about their operations an...A broad range of companies around the world has welcomed artificial intelligence(AI)technology in daily practices because it provides decision-makers with comprehensive and intuitive messages about their operations and assists them in formulating appropriate strategies without any hysteresis.This research identifies the essential components of AI applications under an internal audit framework and provides an appropriate direction of strategies,which relate to setting up a priority on alternatives with multiple dimensions/criteria involvement that need to further consider the interconnected and intertwined relationships among them so as to reach a suitable judgment.To obtain this goal and inspired by a model ensemble,we introduce an innovative fuzzy multiple rule-based decision making framework that integrates soft computing,fuzzy set theory,and a multi-attribute decision making algorithm.The results display that the order of priority in improvement—(A)AI application strategy,(B)AI governance,(D)the human factor,and(C)data infrastructure and data quality—is based on the magnitude of their impact.This dynamically enhances the implementation of an AI-driven internal audit framework as well as responds to the strong rise of the big data environment.Highlights Artificial intelligence(AI)promotes the sustainability development of audit tasks.A fuzzy MRDM model extracts key factors from large amounts of data.Fuzzy decision-making trial and evaluation laboratory analysis accounts for dependence and feedback among factors.An effective framework of AI-driven business audit is proposed in which“AI cognition of senior executives”is the most important criterion.展开更多
Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the developme...Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the development of industrial big data technology,several industrial event solutions based on data have been proposed.These solutions are supported by predictive data and remarkably improve the production level.Taking a heavy plate production line as the research object,through scientific calculations based on historical big data,this paper establishes an optimization logic for plan arrangement,forecasts the quality through the stable relationship between data and quality,intelligently optimizes the subsequent process flow,improves the production line capacity,and reduces the process bottlenecks.展开更多
The factors, such as the network optimization or the network amelioration by fixed telecommunication network operators, the convergence of the Personal Handy-phone System (PHS) network and the Public Switched Telephon...The factors, such as the network optimization or the network amelioration by fixed telecommunication network operators, the convergence of the Personal Handy-phone System (PHS) network and the Public Switched Telephone Network (PSTN), the integration of PSTN and the Third Generation Mobile Communication (3G) Network, the broadband and multimedia based communication networks, causes the requirement for fixed network’s intelligentization. The Softswitch is a feasible approach to meet this kind of requirement. The solution to make the network comprehensively intelligent based on Softswitch is highly advantageous, which enriches communication services and promotes Fixed and Mobile Convergence (FMC).展开更多
There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel cal...There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel calculations can reduce the time of making decision in case of large-scale systems. Effectiveness of parallel calculations depends on the grouping of the rules and variables. Building of the graph of the dependence of the rules and the graph of dependence of the linguistic variables are suggested. On the base of the developed groups of rules and defuzzification of the linguistic variables we suggest to reduce the time of making decision and therefore to increase the effectiveness of the decision making with using of parallel calculations for each group.展开更多
Artificial Intelligence(AI)is a type of intelligence that comes from machines or computer systems that mimics human cognitive function.Recently,AI has been utilized in medicine and helped clinicians make clinical deci...Artificial Intelligence(AI)is a type of intelligence that comes from machines or computer systems that mimics human cognitive function.Recently,AI has been utilized in medicine and helped clinicians make clinical decisions.In gastroenterology,AI has assisted colon polyp detection,optical biopsy,and diagnosis of Helicobacter pylori infection.AI also has a broad role in the clinical prediction and management of gastrointestinal bleeding.Machine learning can determine the clinical risk of upper and lower gastrointestinal bleeding.AI can assist the management of gastrointestinal bleeding by identifying high-risk patients who might need urgent endoscopic treatment or blood transfusion,determining bleeding stigmata during endoscopy,and predicting recurrence of gastrointestinal bleeding.The present review will discuss the role of AI in the clinical prediction and management of gastrointestinal bleeding,primarily on how it could assist gastroenterologists in their clinical decision-making compared to conventional methods.This review will also discuss challenges in implementing AI in routine practice.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the ea...The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the east of the DRC. The study was based on a mixed perspective consisting of objective analysis of quantitative data and interpretative analysis of qualitative data. The results showed that business and strategic intelligence policies have not been established at either company or state level, as this is an area of activity that is not known to the players in companies and public departments, and there are no units or offices in their organizational structures responsible for managing strategic information for competitiveness on the international market. In addition, there is a real need to establish strategic information management units within companies, upstream, and to set up a national strategic information management department or agency to help local companies compete in the marketplace, downstream. This reflects the importance and timeliness of building business and strategic intelligence policies to ensure economic progress and development in the eastern DRC. Business and strategic intelligence provides companies with an appropriate tool for researching, collecting, processing and disseminating information useful for decision-making among stakeholders, in order to cope with a crisis or competitive situation. The study suggests a number of key recommendations based on its findings. To the government, it is recommended to establish the national policy of business and strategic intelligence by setting up a national agency of strategic intelligence in favor of local companies;and to companies to establish business intelligence units in their organizational structures in favor of stakeholders to foster advantageous decision-making in the competitive market and achieve progress. Finally, the study suggests that studies be carried out to fully understand the opportunities and impact of business and strategic intelligence in African countries, particularly in the DRC.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants.Poor performance problem in maintaining power plants is the result of both human errors,human fa...Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants.Poor performance problem in maintaining power plants is the result of both human errors,human factors and the poor implementation of automation in energy management.This problem can potentially be solved using artificial intelligence(AI)and an integrated management system(IMS).This article investigates the current challenges to improving personnel and energy management performance in power plants,identifies the critical success factors(CSFs)for an integrated intelligent framework,and develops an intelligent framework that enables power plants to improve performance.The theoretical basis is founded on a systematic literature review to locate 110 out of 3108 papers studied carefully to examine the performance architecture that best enables effective maintenance.The findings from this literature review are combined with expert judgment and the big data advantages of AI applications to develop an intelligent model.Data are collected from a power plant in Iraq.To ensure the reliability of the proposed model,various hypotheses are tested using structural equation modeling.The results confirm that the measurement model is acceptable,and that the hypotheses are supported and significant.A case study demonstrates the strong relationship and significance between big data of performance and the CSFs.It is hoped that this model will be adopted to enable performance improvement in power plants.展开更多
This paper proposes a mathod of subjective trade-off rate which describles decision-maker's preferince in multiobjective decision-making. Decision-maker can arbitrarity determine his subjective trade-off rate,but ...This paper proposes a mathod of subjective trade-off rate which describles decision-maker's preferince in multiobjective decision-making. Decision-maker can arbitrarity determine his subjective trade-off rate,but it is not sure to be effective.The paper finds aft effective upper bound of subjective trade-off rate,which is the KuhnThcker multiplier of some mathematical programming.For the anbjective trade-off rate not being larger than the upper bonnd,the solving method and properties of the optimal solution corresponding tile trade-off rate are discussed.The paper lastly develops the process of solving multiobjective decision-making with the subjective trade-off rate method.展开更多
During the China International Fair for Trade in Services at the end of May 2019,many people in the industry gathered at the'2019 China Intelligent Industry Forum'and discussed the future innovation and integr...During the China International Fair for Trade in Services at the end of May 2019,many people in the industry gathered at the'2019 China Intelligent Industry Forum'and discussed the future innovation and integration of China’s intelligence industry.This would become another grand event in the field of artificial intelligence(AI),and it strongly promoted the development of China’s industry of AI.展开更多
Agents are the new defacto standard for inclusion in modules of today’s software systems such as ERP systems, mobile applications and operating systems. Agents are an integral part of today’s software design. The qu...Agents are the new defacto standard for inclusion in modules of today’s software systems such as ERP systems, mobile applications and operating systems. Agents are an integral part of today’s software design. The question is how do intelligent agents work in the specific area of ERP credit card processing e-commerce models? To answer this question, a specific area of ERP systems will be analyzed: credit card processing for merchants. One specific merchant credit card processor will be specifically investigated: EVO Merchants. This paper will research how exactly does ERP systems interact using Application Programing Interface or “API” specified by a credit card clearing house. Secure Socket Layers or SSL, and XML are discussed and elaborated on specifically how intelligent agents play such a pivotal role in ERP e-commerce systems for credit card processing.展开更多
I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artifi...I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.展开更多
The authors would like to make the following change to the above article:Co-first authors:Bang Chen and Xin-Wen Fang.The authors apologize for any inconvenience caused by this error.
The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet...The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.展开更多
文摘A new synthetic model of maintenance decision-making, which is made by anartificial neural network (ANN) , expert system (ES) and emulation technology, is put forward. Bymeans of this model all kinds of maintenance resources with low cost can be effectively harmonized;accordingly, the reliability, maintenance efficiency and quality of equipment can be improved, soservice life of equipments is enhanced.
基金the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant no.(G:366-140-38).
文摘With the increasing and rapid growth rate of COVID-19 cases,the healthcare scheme of several developed countries have reached the point of collapse.An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients,in such a way that positive patient can be treated and isolated.A chest radiology image-based diagnosis scheme might have several benefits over traditional approach.The accomplishment of artificial intelligence(AI)based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems.This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19Monitoring System(IFFA-DTLMS).The proposed IFFADTLMSmodelmajorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs.To attain this,the presented IFFA-DTLMS model primarily applies densely connected networks(DenseNet121)model to generate a collection of feature vectors.In addition,the firefly algorithm(FFA)is applied for the hyper parameter optimization of DenseNet121 model.Moreover,autoencoder-long short term memory(AE-LSTM)model is exploited for the classification and identification of COVID19.For ensuring the enhanced performance of the IFFA-DTLMS model,a wide-ranging experiments were performed and the results are reviewed under distinctive aspects.The experimental value reports the betterment of IFFA-DTLMS model over recent approaches.
文摘Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain.
基金supporting this work under Contracts No.MOST 110-2410-H-034-011 and MOST 110-2410-H-034-009,and 13th five-year plan of philosophy and social sciences of Guangdong Province,under Grants No.GD18CLJ02 and Department of education of Guangdong Province,China,No.2020WTSCX139.
文摘A broad range of companies around the world has welcomed artificial intelligence(AI)technology in daily practices because it provides decision-makers with comprehensive and intuitive messages about their operations and assists them in formulating appropriate strategies without any hysteresis.This research identifies the essential components of AI applications under an internal audit framework and provides an appropriate direction of strategies,which relate to setting up a priority on alternatives with multiple dimensions/criteria involvement that need to further consider the interconnected and intertwined relationships among them so as to reach a suitable judgment.To obtain this goal and inspired by a model ensemble,we introduce an innovative fuzzy multiple rule-based decision making framework that integrates soft computing,fuzzy set theory,and a multi-attribute decision making algorithm.The results display that the order of priority in improvement—(A)AI application strategy,(B)AI governance,(D)the human factor,and(C)data infrastructure and data quality—is based on the magnitude of their impact.This dynamically enhances the implementation of an AI-driven internal audit framework as well as responds to the strong rise of the big data environment.Highlights Artificial intelligence(AI)promotes the sustainability development of audit tasks.A fuzzy MRDM model extracts key factors from large amounts of data.Fuzzy decision-making trial and evaluation laboratory analysis accounts for dependence and feedback among factors.An effective framework of AI-driven business audit is proposed in which“AI cognition of senior executives”is the most important criterion.
文摘Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the development of industrial big data technology,several industrial event solutions based on data have been proposed.These solutions are supported by predictive data and remarkably improve the production level.Taking a heavy plate production line as the research object,through scientific calculations based on historical big data,this paper establishes an optimization logic for plan arrangement,forecasts the quality through the stable relationship between data and quality,intelligently optimizes the subsequent process flow,improves the production line capacity,and reduces the process bottlenecks.
文摘The factors, such as the network optimization or the network amelioration by fixed telecommunication network operators, the convergence of the Personal Handy-phone System (PHS) network and the Public Switched Telephone Network (PSTN), the integration of PSTN and the Third Generation Mobile Communication (3G) Network, the broadband and multimedia based communication networks, causes the requirement for fixed network’s intelligentization. The Softswitch is a feasible approach to meet this kind of requirement. The solution to make the network comprehensively intelligent based on Softswitch is highly advantageous, which enriches communication services and promotes Fixed and Mobile Convergence (FMC).
文摘There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel calculations can reduce the time of making decision in case of large-scale systems. Effectiveness of parallel calculations depends on the grouping of the rules and variables. Building of the graph of the dependence of the rules and the graph of dependence of the linguistic variables are suggested. On the base of the developed groups of rules and defuzzification of the linguistic variables we suggest to reduce the time of making decision and therefore to increase the effectiveness of the decision making with using of parallel calculations for each group.
文摘Artificial Intelligence(AI)is a type of intelligence that comes from machines or computer systems that mimics human cognitive function.Recently,AI has been utilized in medicine and helped clinicians make clinical decisions.In gastroenterology,AI has assisted colon polyp detection,optical biopsy,and diagnosis of Helicobacter pylori infection.AI also has a broad role in the clinical prediction and management of gastrointestinal bleeding.Machine learning can determine the clinical risk of upper and lower gastrointestinal bleeding.AI can assist the management of gastrointestinal bleeding by identifying high-risk patients who might need urgent endoscopic treatment or blood transfusion,determining bleeding stigmata during endoscopy,and predicting recurrence of gastrointestinal bleeding.The present review will discuss the role of AI in the clinical prediction and management of gastrointestinal bleeding,primarily on how it could assist gastroenterologists in their clinical decision-making compared to conventional methods.This review will also discuss challenges in implementing AI in routine practice.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
文摘The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the east of the DRC. The study was based on a mixed perspective consisting of objective analysis of quantitative data and interpretative analysis of qualitative data. The results showed that business and strategic intelligence policies have not been established at either company or state level, as this is an area of activity that is not known to the players in companies and public departments, and there are no units or offices in their organizational structures responsible for managing strategic information for competitiveness on the international market. In addition, there is a real need to establish strategic information management units within companies, upstream, and to set up a national strategic information management department or agency to help local companies compete in the marketplace, downstream. This reflects the importance and timeliness of building business and strategic intelligence policies to ensure economic progress and development in the eastern DRC. Business and strategic intelligence provides companies with an appropriate tool for researching, collecting, processing and disseminating information useful for decision-making among stakeholders, in order to cope with a crisis or competitive situation. The study suggests a number of key recommendations based on its findings. To the government, it is recommended to establish the national policy of business and strategic intelligence by setting up a national agency of strategic intelligence in favor of local companies;and to companies to establish business intelligence units in their organizational structures in favor of stakeholders to foster advantageous decision-making in the competitive market and achieve progress. Finally, the study suggests that studies be carried out to fully understand the opportunities and impact of business and strategic intelligence in African countries, particularly in the DRC.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
基金This work was supported/funded by the Ministry of Higher Education/University of Technology Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2019/TK08/UTM/02/4).
文摘Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants.Poor performance problem in maintaining power plants is the result of both human errors,human factors and the poor implementation of automation in energy management.This problem can potentially be solved using artificial intelligence(AI)and an integrated management system(IMS).This article investigates the current challenges to improving personnel and energy management performance in power plants,identifies the critical success factors(CSFs)for an integrated intelligent framework,and develops an intelligent framework that enables power plants to improve performance.The theoretical basis is founded on a systematic literature review to locate 110 out of 3108 papers studied carefully to examine the performance architecture that best enables effective maintenance.The findings from this literature review are combined with expert judgment and the big data advantages of AI applications to develop an intelligent model.Data are collected from a power plant in Iraq.To ensure the reliability of the proposed model,various hypotheses are tested using structural equation modeling.The results confirm that the measurement model is acceptable,and that the hypotheses are supported and significant.A case study demonstrates the strong relationship and significance between big data of performance and the CSFs.It is hoped that this model will be adopted to enable performance improvement in power plants.
文摘This paper proposes a mathod of subjective trade-off rate which describles decision-maker's preferince in multiobjective decision-making. Decision-maker can arbitrarity determine his subjective trade-off rate,but it is not sure to be effective.The paper finds aft effective upper bound of subjective trade-off rate,which is the KuhnThcker multiplier of some mathematical programming.For the anbjective trade-off rate not being larger than the upper bonnd,the solving method and properties of the optimal solution corresponding tile trade-off rate are discussed.The paper lastly develops the process of solving multiobjective decision-making with the subjective trade-off rate method.
文摘During the China International Fair for Trade in Services at the end of May 2019,many people in the industry gathered at the'2019 China Intelligent Industry Forum'and discussed the future innovation and integration of China’s intelligence industry.This would become another grand event in the field of artificial intelligence(AI),and it strongly promoted the development of China’s industry of AI.
文摘Agents are the new defacto standard for inclusion in modules of today’s software systems such as ERP systems, mobile applications and operating systems. Agents are an integral part of today’s software design. The question is how do intelligent agents work in the specific area of ERP credit card processing e-commerce models? To answer this question, a specific area of ERP systems will be analyzed: credit card processing for merchants. One specific merchant credit card processor will be specifically investigated: EVO Merchants. This paper will research how exactly does ERP systems interact using Application Programing Interface or “API” specified by a credit card clearing house. Secure Socket Layers or SSL, and XML are discussed and elaborated on specifically how intelligent agents play such a pivotal role in ERP e-commerce systems for credit card processing.
文摘I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.
文摘The authors would like to make the following change to the above article:Co-first authors:Bang Chen and Xin-Wen Fang.The authors apologize for any inconvenience caused by this error.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:488-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.