期刊文献+
共找到300篇文章
< 1 2 15 >
每页显示 20 50 100
Maneuvering target tracking using threshold interacting multiple model algorithm
1
作者 徐迈 山秀明 徐保国 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期440-444,共5页
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i... To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy. 展开更多
关键词 maneuvering target tracking Kalman filter interacting multiple model (imm threshold interacting multiple model (Timm)
下载PDF
An Algorithm of the Adaptive Grid and Fuzzy Interacting Multiple Model 被引量:3
2
作者 Yuan Zhang Chen Guo +2 位作者 Hai Hu Shubo Liu Junbo Chu 《Journal of Marine Science and Application》 2014年第3期340-345,共6页
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo... This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications. 展开更多
关键词 maneuvering target tracking adaptive grid fuzzy logicinference variable structure multiple model adaptive grid andfuzzy interacting multiple model (AGFimm) interacting multiplemodel (imm
下载PDF
Aircraft Trajectory Prediction Based on Modified Interacting Multiple Model Algorithm 被引量:8
3
作者 张军峰 武晓光 王菲 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期180-184,共5页
In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algo... In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algorithm.In the proposed M-IMM algorithm,a new likelihood function is defined for the sake of updating flight mode probabilities,in which the influences of interacting to residual's mean error are taken into account and the assumption of likelihood function being a zero mean Gaussian function is discarded.Finally,the proposed M-IMM algorithm is applied to the simulation of the aircraft trajectory prediction,and the comparative studies are conducted to existing algorithms.The simulation results indicate the proposed M-IMM algorithm can predict aircraft trajectory more quickly and accurately. 展开更多
关键词 trajectory likelihood aircraft quickly interacting updating assumption Prediction false Bayesian
下载PDF
An interacting multiple model-based two-stage Kalman filter for vehicle positioning 被引量:2
4
作者 徐启敏 李旭 +1 位作者 李斌 宋向辉 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期177-181,共5页
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(... To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF. 展开更多
关键词 interacting multiple model(imm) two-stage filter uncertain noise vehicle positioning
下载PDF
Application of interacting multiple model in integrated positioning system of vehicle
5
作者 WEI Wen jun GAO Xue ze +1 位作者 GE Li rain GAO Zhong jun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期279-285,共7页
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,... To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system. 展开更多
关键词 VEHICLE integrated positioning system information fusion algorithm extended Kalman filter (KEF) interacting multiple model (imm
下载PDF
A novel maneuvering multi-target tracking algorithm based on multiple model particle filter in clutters 被引量:2
6
作者 胡振涛 Pan Quan Yang Feng 《High Technology Letters》 EI CAS 2011年第1期19-24,共6页
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi... To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method. 展开更多
关键词 maneuvering multi-target tracking multiple model particle filter interacting multiple model imm) joint probabilistic data association
下载PDF
Application of interacting multi-model algorithm in gyro signal processing
7
作者 王萌 Wang Xiaofeng +2 位作者 Zhang He Lu Jianshan Zhang Aijun 《High Technology Letters》 EI CAS 2014年第4期436-441,共6页
There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope c... There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well. 展开更多
关键词 GYRO interacting multiple model (imm Kalman filter singer model signal processing
下载PDF
一种基于模型概率单调性变化的自适应IMM-UKF改进算法 被引量:1
8
作者 王平波 陈强 +2 位作者 卫红凯 贾耀君 沙浩然 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期41-48,共8页
针对现有交互式多模型(IMM)算法模型间切换迟滞和转换速率慢的缺点,提出一种基于模型概率单调性变化的自适应交互式多模型无迹卡尔曼滤波改进算法(mIMM-UKF)。该算法利用后验信息模型概率的单调性,对马尔可夫转移概率矩阵及模型估计概... 针对现有交互式多模型(IMM)算法模型间切换迟滞和转换速率慢的缺点,提出一种基于模型概率单调性变化的自适应交互式多模型无迹卡尔曼滤波改进算法(mIMM-UKF)。该算法利用后验信息模型概率的单调性,对马尔可夫转移概率矩阵及模型估计概率进行二次修正,加快了匹配模型的切换速度及转换速率。仿真结果表明,与现有算法相比,该算法通过快速切换匹配模型,有效提高了水下目标跟踪精度。 展开更多
关键词 水下目标跟踪 imm-UKF算法 自适应 转移概率矩阵 单调性
下载PDF
基于改进自适应IMM算法的高速列车组合定位
9
作者 王小敏 雷筱 张亚东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期817-825,共9页
针对列车高精度定位问题,该文提出基于改进自适应交互多模型(IMM)的高速列车高精度组合定位方法。首先,根据列车定位需求和各传感器特点,设计了卫星接收器、轮轴测速传感器、测速雷达以及单轴陀螺仪4种传感器的组合定位方案。然后,针对... 针对列车高精度定位问题,该文提出基于改进自适应交互多模型(IMM)的高速列车高精度组合定位方法。首先,根据列车定位需求和各传感器特点,设计了卫星接收器、轮轴测速传感器、测速雷达以及单轴陀螺仪4种传感器的组合定位方案。然后,针对IMM融合滤波算法因先验信息不准导致固定参数设置不当的问题,引入Sage-Husa自适应滤波和转移概率矩阵(TPM)自适应更新集成为自适应IMM算法。针对多模型切换的滞后问题,利用子模型似然函数值能快速反映模型变化趋势的特点,将似然函数值设为判定标志,并引入判定窗对TPM矩阵元素进行修正,有效提升了模型的切换速度。最后,基于改进自适应IMM算法对4种传感器定位信息进行融合滤波,实现高速列车的高精度组合定位。仿真结果表明:改进后的算法相比其他自适应IMM算法提升定位精度1.6%~14.7%,并且能通过提高模型间切换速度来有效降低位置误差峰值,同时具备较好的抗噪性能。 展开更多
关键词 列车定位 交互式多模型 Sage-Husa自适应滤波算法 马尔可夫转移概率矩阵 判定窗
下载PDF
基于改进ATPM-IMM算法的外辐射源雷达机动目标跟踪
10
作者 傅雄滔 易建新 +1 位作者 万显荣 徐宝兄 《太赫兹科学与电子信息学报》 2024年第2期122-131,共10页
针对外辐射源雷达进行机动目标跟踪时,现有的自适应交互式多模型(AIMM)算法难以达到高精确度跟踪的问题,提出一种基于改进的自适应转移概率交互式多模型(ATPM-IMM)的机动目标跟踪算法。该算法在ATPM-IMM算法的基础上增加了自适应控制窗... 针对外辐射源雷达进行机动目标跟踪时,现有的自适应交互式多模型(AIMM)算法难以达到高精确度跟踪的问题,提出一种基于改进的自适应转移概率交互式多模型(ATPM-IMM)的机动目标跟踪算法。该算法在ATPM-IMM算法的基础上增加了自适应控制窗,对转移概率矩阵进行再次修正,从而可根据目标的机动情况自适应切换机动模型,提高真实模型的匹配概率。仿真和实测数据结果表明,所提算法可有效提高外辐射源雷达进行机动目标跟踪的精确度。 展开更多
关键词 机动目标跟踪 外辐射源雷达 交互式多模型 自适应转移概率 自适应控制窗
下载PDF
基于GPDA-IMM和时间管理的相控阵雷达多目标跟踪算法
11
作者 张利平 赵俊梅 +2 位作者 刘丹 陈昌鑫 孙传猛 《测试技术学报》 2024年第5期552-558,共7页
多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数... 多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数据关联-交互式多模型(Generalized Probability Data Association-Interacting Multiple Model, GPDA-IMM)算法,GPDA运算量小,IMM综合了无迹和容积卡尔曼滤波和粒子滤波多模型滤波的特点,且优化权重因子,达到了较好跟踪性能。最后,通过仿真平台模拟8个运动目标的现实场景,结合时间管理和目标跟踪调整回访率,进行大量的仿真实验,证明了算法对不同目标类型和机动状态的有效性和实用性。 展开更多
关键词 相控阵雷达 广义概率数据关联(GPDA) 交互式多模型(imm) 目标跟踪 时间管理
下载PDF
GEO混合推力机动目标跟踪IMM算法 被引量:3
12
作者 王常虹 张大力 +1 位作者 夏红伟 马广程 《宇航学报》 EI CAS CSCD 北大核心 2023年第3期443-453,共11页
针对交互多模型(IMM)算法求解地球静止轨道(GEO)卫星混合推力机动目标跟踪问题时模型匹配难、模型转移概率近似平均和响应速度慢的问题,从交互模型集构建和模型转移概率自适应设计两个方面出发提出一种改进IMM算法。该方法通过考虑无机... 针对交互多模型(IMM)算法求解地球静止轨道(GEO)卫星混合推力机动目标跟踪问题时模型匹配难、模型转移概率近似平均和响应速度慢的问题,从交互模型集构建和模型转移概率自适应设计两个方面出发提出一种改进IMM算法。该方法通过考虑无机动、脉冲机动和有限推力机动三种模式,构建了覆盖目标机动状态的交互模型集,提高了模型与机动目标实际运行状态的匹配度;采用一种基于加速度估计自适应修正的模型交互概率修正方法,提升了算法对目标机动状态的响应速度和跟踪精度。仿真结果表明,所提算法是解决混合推力模式下的GEO机动目标跟踪问题的有效手段,在收敛速度和收敛精度等方面与传统方法相比有较大提高。 展开更多
关键词 地球静止轨道卫星 机动目标跟踪 混合推力 交互多模型(imm) 轨道机动
下载PDF
Modeling of UAV path planning based on IMM under POMDP framework 被引量:4
13
作者 YANG Qiming ZHANG Jiandong SHI Guoqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期545-554,共10页
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO... In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law. 展开更多
关键词 PARTIALLY OBSERVABLE MARKOV decision process (POMDP) interactive multiple model (imm) filtering path planning target tracking state transfer law
下载PDF
Data Fusion Algorithm for Multi-Sensor Dynamic System Based on Interacting Multiple Model 被引量:3
14
作者 陈志锋 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第3期265-272,共8页
This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorre... This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorrelated sensor noises by using augmented fusion before model interacting. And eigenvalue decomposition is utilized to reduce calculation complexity and implement parallel computing. In simulation part, the feasibility of the algorithm was tested and verified, and the relationship between sensor number and the estimation precision was studied. Results show that simply increasing the number of sensor cannot always improve the performance of the estimation. Type and number of sensors should be optimized in practical applications. 展开更多
关键词 MULTI-SENSOR cross-correlated noises augmented fusion interacting multiple model(imm)
原文传递
Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance 被引量:5
15
作者 LEI Ming HAN Chong-Zhao 《自动化学报》 EI CSCD 北大核心 2006年第1期28-37,共10页
A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online.... A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently. 展开更多
关键词 最大期望值 imm滤波器 EM算法 参数估计 噪音识别
下载PDF
Improved IMM algorithm based on support vector regression for UAV tracking 被引量:2
16
作者 ZENG Yuan LU Wenbin +3 位作者 YU Bo TAO Shifei ZHOU Haosu CHEN Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期867-876,共10页
With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirement... With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable. 展开更多
关键词 interacting multiple model(imm)filter constant acceleration(CA) unmanned aerial vehicle(UAV) support vector regression(SVR)
下载PDF
IMMKF与Chan-Taylor算法的协同定位 被引量:1
17
作者 王欣悦 余慧敏 胡露宁 《电子科技》 2023年第12期1-8,共8页
TDOA(Time Difference of Arrival)测距方式是UWB(Ultra Wide Band)室内定位的常用方法,针对其不可避免的随机误差以及目标改变运动状态定位不准确的问题,文中提出了一种Chan-Taylor-IMMKF(Interacting Multiple Model Kalman Filter)... TDOA(Time Difference of Arrival)测距方式是UWB(Ultra Wide Band)室内定位的常用方法,针对其不可避免的随机误差以及目标改变运动状态定位不准确的问题,文中提出了一种Chan-Taylor-IMMKF(Interacting Multiple Model Kalman Filter)定位算法。该算法由Chan-Taylor加权算法与加入自适应算法IMM卡尔曼滤波算法组成,通过Chan-Taylor加权算法初次取得目标估计坐标,将该坐标值作为自适应算法IMM的卡尔曼滤波器的测量值,对目标坐标进行多次滤波处理,最终加权得到目标的最终估计坐标。实验将该算法与未滤波的Chan-Taylor加权算法、使用传统的卡尔曼滤波算法进行对比,结果显示该算法有效减小了系统的随机误差,并克服了传统卡尔曼滤波器在目标忽然改变运动状态时不能及时跟踪从而产生较大误差的问题,将误差标准差均值控制在15 cm之内。 展开更多
关键词 室内定位 超宽带 TDOA CHAN算法 Taylor算法 残差加权 卡尔曼滤波 交互式多模型
下载PDF
An efficient visual tracking method for multiple moving targets
18
作者 CHEN Xiao-hui Lyudmila Mihaylova +1 位作者 David R Bull Nishan Canagarajah 《通讯和计算机(中英文版)》 2008年第5期61-65,共5页
关键词 边界检测 临近算法 交换倍数模式滤波器 计算机技术
下载PDF
VICKF-IMM算法在机动目标跟踪中的应用
19
作者 王帅祥 《导弹与航天运载技术(中英文)》 CSCD 北大核心 2023年第2期16-19,共4页
针对智能体移动方式复杂,对其进行观测的传感器测量的信息存在噪声以及目标运动轨迹发生突然的改变会导致目标观测失真甚至错误的问题,提出了一种变积容积卡尔曼滤波交互多模型算法(VICKF-IMM)。该算法将容积卡尔曼滤波与交互多模型算... 针对智能体移动方式复杂,对其进行观测的传感器测量的信息存在噪声以及目标运动轨迹发生突然的改变会导致目标观测失真甚至错误的问题,提出了一种变积容积卡尔曼滤波交互多模型算法(VICKF-IMM)。该算法将容积卡尔曼滤波与交互多模型算法相结合,并对容积卡尔曼滤波(CKF)中球面积分进行变积分转换处理。优化了其积分求解的方式,提高了整体的稳定性。Monte-Carlo仿真分析,与CKF-IMM和UKF-IMM算法相比,该算法的跟踪精度有明显的提高,并在目标运动发生突变时有更高的稳定性。 展开更多
关键词 SCKF-imm 机动目标跟踪 容积卡尔曼滤波 交互多模型算法
下载PDF
非线性量测下的机动多目标跟踪
20
作者 国强 任海宁 +1 位作者 周凯 戚连刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第5期64-73,共10页
为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过... 为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过去相关无偏量测转换实现位置量测从极坐标系到笛卡尔坐标系的无偏转换,并通过预测值去除量测误差和其协方差的相关性造成的滤波估计偏差,实现了非线性场景下的机动多目标跟踪;然后,通过航迹和量测的关联新息以及目标的机动约束构建联合波门,降低了杂波量测的数量;最后引入改进的模糊算法,以目标的模型后验概率为输入,根据模型的分离程度自适应调节运动模型的过程噪声,增加滤波精度。研究结果表明:在杂波环境下,通过与CKF-JMS-δ-GLMB、CKF-IMM-δ-GLMB等非线性多模型滤波器对比,所提算法计算时间较小,且跟踪精度更高,鲁棒性强。所提算法避免了传统的非线性处理方式计算量较大的问题,并且具有较好的杂波抑制特性,提升了非线性量测下机动多目标跟踪的性能。 展开更多
关键词 非线性量测 机动多目标 δ-广义标签多伯努利滤波器 量测转换 交互多模型 模糊算法
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部