期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Dynamical Predictability of Leading Interannual Variability Modes of the Asian-Australian Monsoon in Climate Models 被引量:1
1
作者 Lin WANG Hong-Li REN +2 位作者 Fang ZHOU Nick DUNSTONE Xiangde XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期1998-2012,I0002,I0003,共17页
The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using... The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using retrospective prediction datasets from the seasonal forecasting models in four operational centers worldwide.Results show that the model predictability of the leading AAM modes is sensitive to how they are defined in different seasonal sequences,especially for the second mode.The first AAM mode,from various seasonal sequences,coincides with the El Niño phase transition in the eastern-central Pacific.The second mode,initialized from boreal summer and autumn,leads El Niño by about one year but can exist during the decay phase of El Niño when initialized from boreal winter and spring.Our findings hint that ENSO,as an early signal,is conducive to better performance of model predictions in capturing the spatiotemporal variations of the leading AAM modes.Still,the persistence barrier of ENSO in spring leads to poor forecasting skills of spatial features.The multimodel ensemble(MME)mean shows some advantage in capturing the spatiotemporal variations of the AAM modes but does not provide a significant improvement in predicting its temporal features compared to the best individual models in predicting its temporal features.The BCC_CSM1.1M shows promising skill in predicting the two AAM indices associated with two leading AAM modes.The predictability demonstrated in this study is potentially useful for AAM prediction in operational and climate services. 展开更多
关键词 Asian-Australian monsoon(AAM) leading interannual variability modes El Niño seasonal forecasting models multimodel ensemble(MME)
下载PDF
Impacts of Sea Surface Temperature on the Interannual Variability of Winter Haze Days in Guangdong Province 被引量:1
2
作者 刘晴晴 李春晖 +3 位作者 谷德军 郑彬 林爱兰 彭冬冬 《Journal of Tropical Meteorology》 SCIE 2023年第2期168-178,共11页
The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading... The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze. 展开更多
关键词 Guangdong province winter haze days interannual variability sea surface temperature ENSO
下载PDF
Interdecadal Change in the Interannual Variability of South China Sea Summer Monsoon Intensity
3
作者 周明颉 简茂球 高斯 《Journal of Tropical Meteorology》 SCIE 2023年第3期312-323,共12页
The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of... The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of the SCSSM has experienced a significant interdecadal enhancement around the end of the 1980s,which may be attributed to the interdecadal changes in the evolution of the tropical Indo-Pacific sea surface temperature(SST)anomalies and their impacts on the SCSSM.From 1961 to 1989,the low-level circulation over the South China Sea is primarily affected by the SST anomalies in the tropical Indian Ocean via the mechanism of Kelvin-wave-induced Ekman divergence.While in 1990 to 2020,the impacts of the summer SST anomalies in the Maritime Continent and the equatorial central to eastern Pacific on the SCSSM are enhanced,via anomalous meridional circulation and Mastuno-Gill type Rossby wave atmospheric response,respectively.The above interdecadal changes are closely associated with the interdecadal changes in the evolution of El Niño–Southern Oscillation(ENSO)events.The interdecadal variation of the summer SST anomalies in the developing and decaying phases of ENSO events enhances the influence of the tropical Indo-Pacific SST on the SCSSM,resulting in the interdecadal change in the interannual variability of the SCSSM. 展开更多
关键词 South China Sea summer monsoon interannual variability interdecadal change Indo-Pacific Ocean sea surface temperature
下载PDF
The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon 被引量:160
4
作者 陈文 Han-F.Graf 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期48-60,共13页
Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon... Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences. 展开更多
关键词 East Asian winter monsoon interannual variability SST Summer monsoon
下载PDF
The Interannual Variability of Summer Rainfall in the Arid and Semiarid Regions of Northern China and Its Association with the Northern Hemisphere Circumglobal Teleconnection 被引量:27
5
作者 黄刚 刘永 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期257-268,共12页
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional ch... Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level. 展开更多
关键词 rotated empirical orthogonal function analysis ARID SEMIARID interannual variability circumglobal teleconnection
下载PDF
Interannual Variability of Autumn Precipitation over South China and its Relation to Atmospheric Circulation and SST Anomalies 被引量:23
6
作者 牛宁 李建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第1期117-125,共9页
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and th... The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH. 展开更多
关键词 interannual variability autumn precipitation South China circulation anomaly sea surfacetemperature
下载PDF
Interannual Variability of the Normalized Difference Vegetation Index on the Tibetan Plateau and Its Relationship with Climate Change 被引量:24
7
作者 周定文 范广洲 +3 位作者 黄荣辉 方之芳 刘雅勤 李洪权 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期474-484,共11页
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly... The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability. 展开更多
关键词 Tibetan Plateau normalized difference vegetation index (NDVI) ECOSYSTEM climate change interannual variability
下载PDF
The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model 被引量:33
8
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期31-47,共17页
Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asi... Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40–110°E, 10–20°N), including the Indian monsoon and the Southeast Asian monsoon, while the EAM de-fined in this paper is located in the subtropical region of East Asia (110–125°E, 20–40°N). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper. In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anoma-lous winter EAM may have some correlation with the succeeding summer EAM, but this relation-ship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well. Key words East Asian monsoon - Interannual variability - Coupled climate model The author wishes to thank Profs. Wu G.X., Zhang X.H., and Dr. Yu Y.Q. for providing the coupled model re-sults. Dr. Yu also kindly provided assistance in using the model output. This work was supported jointly by the Na-tional Natural Science Foundation of China key project ’ The analysis on the seasonal-to-interannual variation of the general circulation’ under contract 49735160 and Chinese Academy of Sciences key project ’ The Interannual Va-riability and Predictability of East Asian Monsoon’. 展开更多
关键词 East Asian monsoon interannual variability Coupled climate model
下载PDF
Diagnostic Study on Seasonality and Interannual Variability of Wind Field 被引量:15
9
作者 薛峰 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1999年第4期537-543,共7页
Based on NCEP/ NCAR reanalysis data during 1980-1994, seasonally and interannual variability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum o... Based on NCEP/ NCAR reanalysis data during 1980-1994, seasonally and interannual variability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum of seasonally in the tropics, the subtropics and high latitudes, which is called the tropical, subtropical and temperate-frigid monsoon region respectively. In the upper troposphere, the subtropical monsoon combines with the tropical monsoon as a nonseparably planetary monsoon system. In the stratosphere, there is a belt with very large seasonality in each hemisphere caused by the inversely seasonal circulation and by the establishment and collapse of the night jet. (2) Seasonal variation of the large-scale monsoon may generally be attributed to that of the zonal wind, however, seasonal variation of the meridional wind is of great importance in East Asian monsoon region. (3) In monsoon region, interannual variability of the atmospheric general circulation is closely related to seasonal variation of monsoon, while in the tropical Pacific, it may considerably be influenced by the external factors such as sea surface temperature (SST) anomalies associated with El Nino or La Nina event. Moreover, interannual variability undergoes a pronounced annual cycle. 展开更多
关键词 Atmospheric general circulation SEASONALITY interannual variability MONSOON
下载PDF
Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS 被引量:15
10
作者 李菲 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期441-454,共14页
The interannual variability of East Asian winter monsoon (EAWM) circulation from the Development of a European Multi-Model Ensemble (MME) System for Seasonal to Inter-Annual Prediction (DEMETER) hindcasts was ev... The interannual variability of East Asian winter monsoon (EAWM) circulation from the Development of a European Multi-Model Ensemble (MME) System for Seasonal to Inter-Annual Prediction (DEMETER) hindcasts was evaluated against observation reanalysis data. We evaluated the DEMETER coupled general circulation models (CGCMs)' retrospective prediction of the typical EAWM and its associated atmospheric circulation. Results show that the EAWM can be reasonably predicted with statistically significant accuracy, yet the major bias of the hindcast models is the underestimation of the related anomalies. The temporal correlation coefficient (TCC) of the MME-produced EAWM index, defined as the first EOF mode of 850- hPa air temperature within the EAWM domain (20^-60~N, 90^-150~E), was 0.595. This coefficient was higher than those of the corresponding individual models (range: 0.39-0.51) for the period 1969 2001; this result indicates the advantage of the super-ensemble approach. This study also showed that the ensemble models can reasonably reproduce the major modes and their interannual variabilities for sea level pressure, geopotential height, surface air temperature, and wind fields in Eurasia. Therefore, the prediction of EAWM interannual variability is feasible using multimodel ensemble systems and that they may also reveal the associated mechanisms of the EAWM interannual variability. 展开更多
关键词 East Asian winter monsoon interannual variability DEMETER HINDCAST
下载PDF
Weakening of Interannual Variability in the Summer East Asian Upper-tropospheric Westerly Jet since the Mid-1990s 被引量:15
11
作者 陆日宇 叶红 Jong-Ghap JHUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第6期1246-1258,共13页
In this study,we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific(WNP) since th... In this study,we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific(WNP) since the mid-1990s,concurrent with the previously documented decrease of the westerly jet over North China and Northwest China.Corresponding to this weakening of zonal wind variability,the meridional displacement of the East Asian westerly jet(EAJ) manifested as the leading mode of zonal wind variability over the WNP and East Asia(WNP-EA) before the mid-1990s but not afterward.The energetics of the anomalous pattern associated with the meridional displacement of the EAJ suggests that barotropic energy conversion,from basic flow to anomalous patterns,has led to the weakening of the variability in the EAJ meridional displacement and to a change in the leading dominant mode since the mid-1990s.The barotropic energy conversion efficiently maintained the anomalies associated with the variability in the EAJ meridional displacement during 1979-1993 but acted to dampen the anomalies during 1994-2008.A further investigation of the energetics suggests that the difference in the patterns of the circulation anomaly associated with either the first leading mode or the meridional displacement of the EAJ,i.e.,a southwest-northeast tilted pattern during 1979-1993 and a zonally oriented pattern during 1994-2008,has contributed greatly to the change in barotropic energy conversion. 展开更多
关键词 East Asian jet mid-1990s interannual variability ENERGETICS
下载PDF
The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability 被引量:5
12
作者 胡瑞金 刘秦玉 +2 位作者 王启 J.Stuart GODFREY 孟祥凤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期220-229,共10页
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years ... The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r 展开更多
关键词 meridional overturning circulation northern Indian Ocean interannual variability wind stress circulation index
下载PDF
Interannual variability of mixed layer depth and heat storage of upper layer in the tropical Pacific Ocean 被引量:5
13
作者 LINYihua YOUXiaobao GUANYuping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第1期31-39,共9页
By using the upper layer data(downloaded from the web of the Scripps Institution of Oceanography),the interannual variability of the heat storage of upper layer(from surface to 400 m depth) and the mixed layer depth i... By using the upper layer data(downloaded from the web of the Scripps Institution of Oceanography),the interannual variability of the heat storage of upper layer(from surface to 400 m depth) and the mixed layer depth in the tropical Pacific Ocean are investigated. The abnormal signal of the warm event comes from the central and west Pacific Ocean, whereas it is regarded that the abnormal signal of the warm event comes from the east Pacific Ocean in the popular viewpoint. From the viewpoint on the evolution of the interannual variability of the mixed layer depth and the heat storage of the whole upper layer, the difference between the two types of El Nino is so small that it can be neglected. During these two El Nino/La Nina events(1972/1973 and 1997/1998), other than the case of the heat storage or for the mixed layer depth, the abnormal signal propagates from the central and west Pacific Ocean to the east usually by the path along the equator whereas the abnormal signal propagates from the east to the west by the path northern to the equator. For the interannual variability, the evolution of the mixed layer depth corresponds to that of the heat storage in the upper layer very well. This is quite different from the evolution of seasonality. 展开更多
关键词 interannual variability heat storage mixed layer depth tropical Pacific Ocean
下载PDF
Comparison Between GAMIL, and CAM2 on Interannual Variability Simulation 被引量:4
14
作者 杨军丽 王斌 +2 位作者 郭裕福 万慧 季仲贞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第1期82-88,共7页
Recently, a new atmospheric general circulation model (GAMIL: Grid-point Atmospheric Model of IAP LASG) has been developed at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), which... Recently, a new atmospheric general circulation model (GAMIL: Grid-point Atmospheric Model of IAP LASG) has been developed at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), which is based on the Community Atmospheric Model Version 2 (CAM2) of the National Center for Atmospheric Research (NCAR). Since the two models have the same physical processes but different dynamical cores, the interannual variability simulation performances of the two models are compared. The ensemble approach is used to reduce model internal variability. In general, the simulation performances of the two models are similar. Both models have good per- formance in simulating total space-time variability and the Southern Oscillation Index. GAMIL performs better in the Eastern Asian winter circulation simulation than CAM2, and the model internal variability of GAMIL has a better response to external forcing than that of CAM2. These indicate that the improvement of the dynamic core is very important. It is also verified that there is less predictability in the middle and high latitudes than in the low latitudes. 展开更多
关键词 interannual variability CIRCULATION ENSEMBLE GAMIL CAM2
下载PDF
Interannual variability in the Mindanao Eddy and its impact on thermohaline structure pattern 被引量:5
15
作者 ZHANG Qilong ZHOU Hui LIU Hongwei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期56-65,共10页
The major feature, interannual variability and variation cause of the Mindanao Eddy and its im- pact on the thermohaline structure are analyzed based on the Argo profiling float data, the history observed data and the... The major feature, interannual variability and variation cause of the Mindanao Eddy and its im- pact on the thermohaline structure are analyzed based on the Argo profiling float data, the history observed data and the SODA data. The analysis results show that the Mindanao Eddy is a per- manent cyclonic meso-scale eddy and spreads vertically from about 500 m depth upward do about 50 m depth. In addition to its strong seasonal variability, the Mindanao Eddy displays a remark- able interannual variability associated with ENSO. It strengthens and expands eastward during E1 Nifio while it weakens and retreats westward during La Nifia. The interannual variability in the Mindanao Eddy may be caused by the North Equatorial Counter Current, the North Equatorial Current, the Mindanao Current and the Indonesian Through Flow. The eddy variability can have a great influence on the thermohaline structure pattern in the local upper ocean. When the eddy is strong, the cold and low salinity water inside the eddy moves violently upward from deep layer, the thermoeline depth greatly shoals, and the subsurface high salinity water largely decreases ,with the upper mixed layer becoming thinner, and vice versa. 展开更多
关键词 the Mindanao Eddy interannual variability thermohaline structure ENSO
下载PDF
Climate-Vegetation Interannual Variability in a Coupled Atmosphere-Ocean-Land Model 被引量:4
16
作者 智海 王盘兴 +3 位作者 丹利 俞永强 徐永福 郑伟鹏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第3期599-612,共14页
The coupled models of both the Global Ocean-Atmosphere-Land System (GOALS) and the Atmosphere- Vegetation Interaction Model (GOALS-AVIM) are used to study the main characteristics of interannual variations. The si... The coupled models of both the Global Ocean-Atmosphere-Land System (GOALS) and the Atmosphere- Vegetation Interaction Model (GOALS-AVIM) are used to study the main characteristics of interannual variations. The simulated results are also used to investigate some significant interannual variability and correlation analysis of the atmospheric circulation and terrestrial ecosystem. By comparing the simulations of the climate model GOALS-AVIM and GOALS, it is known that the simulated results of the interannual variations of the spatial and temporal distributions of the surface air temperatures and precipitation are generally improved by using AVIM in GOALS-AVIM. The interannual variation displays some distinct characteristics of the geographical distribution. Both the Net Primary Production (NPP) and the Leap Area Index (LAI) have quasi 1-2-year cycles. Meanwhile, precipitation and the surface temperatures have 2-4- year cycles. Conditions when the spectrum density values of GOALS are less than those of GOALS-AVIM, tell us that the model coupled with AVIM enhances the simulative capability for interannual variability and makes the annual cycle variability more apparent. Using Singular Value Decomposition (SVD) analysis, the relationship between the ecosystem and the atmospheric circulation in East Asia is explored. The result shows that the strengthening and weakening of the East Asian monsoon, characterized by the geopotential heights at 500 hPa and the wind fields at 850 hPa, correspond to the spatiotemporal pattern of the NPP. The correlation between NPP and the air temperature, precipitation and solar radiation are different in interannual variability because of the variation in vegetation types. 展开更多
关键词 interannual variability net primary production atmosphere-vegetation interaction model twoway interaction
下载PDF
Interannual Variability of Snow Depth over the Tibetan Plateau and Its Associated Atmospheric Circulation Anomalies 被引量:4
17
作者 Mao Jiang-Yu 《Atmospheric and Oceanic Science Letters》 2010年第4期213-218,共6页
The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data... The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon. 展开更多
关键词 Tibetan Plateau snow depth interannual variability atmospheric circulation anomalies
下载PDF
Interannual variability of thermal front west of Luzon Island in boreal winter 被引量:2
18
作者 SUN Ruili LING Zheng +1 位作者 CHEN Changlin YAN Yunwei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第11期102-108,共7页
Interannual variability of thermal front west of Luzon Island during the winter of 1993-2013 is examined with the method of singular value decomposition (SVD) and a suite of satellite measurements in this paper. It ... Interannual variability of thermal front west of Luzon Island during the winter of 1993-2013 is examined with the method of singular value decomposition (SVD) and a suite of satellite measurements in this paper. It is found that both the area and intensity of the thermal front west of Luzon Island show apparent interannual variability. Further study based on SVD shows that the interannual variability of the thermal front is highly associated with E1 Nifio and Southern Oscillation (ENSO), and the correlation coefficient between Nifio3.4 index and the first Principal Component (PC1) of thermal front can reach -0.65. The mechanism can be described as follows. In E1 Nifio (La Nifia) years, the East Asian winter monsoon (EAWM) is weakened (enhanced), inducing weaker (stronger) local wind stress curl (WSC) west of Luzon Island, and resulting in weakened (enhanced) Luzon cold eddy, which finally leads to the weakening (enhancement) of the thermal front. 展开更多
关键词 thermal front interannual variability Luzon Island ENSO South China Sea
下载PDF
Impacts of oceanographic factors on interannual variability of the winter-spring cohort of neon flying squid abundance in the Northwest Pacific Ocean 被引量:9
19
作者 YU Wei CHEN Xinjun +1 位作者 CHEN Changsheng ZHANG Yu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第10期48-59,共12页
The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we... The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we have examined the impacts of climate variability and local biophysical environments on the interannual variability of the abundance of the western winter-spring cohort of O. bartramii over the period of 1995–2011. The results showed that the squid had experienced alternant positive and negative Pacific Decadal Oscillation(PDO) over the past 17 years during which five El Ni?o and eight La Ni?a events occurred. The catch per unit effort(CPUE) was positively correlated with the PDO index(PDOI) at a one-year time lag. An abnormally warm temperature during the La Ni?a years over the positive PDO phase provided favorable oceanographic conditions for the habitats of O.bartramii, whereas a lower temperature on the fishing ground during the El Ni?o years over the negative PDO phase generally corresponded to a low CPUE. The same correlation was also found between CPUE and Chl a concentration anomaly. A possible explanation was proposed that the CPUE was likely related to the climateinduced variability of the large-scale circulation in the Northwest Pacific Ocean: high squid abundance often occurred in a year with a significant northward meander of the Kuroshio Current. The Kuroshio Current advected the warmer and food-rich waters into the fishing ground, and multiple meso-scale eddies arising from current instability enhanced the food retention on the fishing ground, all of which were favorable for the life stage development of the western squid stocks. Our results help better understand the potential process that the climatic and oceanographic factors affect the abundance of the winter-spring cohort of O. bartramii in the Northwest Pacific Ocean. 展开更多
关键词 Ommastrephes bartramii squid abundance interannual variability PDO-CPUE relationship Kuroshio meandering meso-scale eddies
下载PDF
The Interannual Variability of Climate in a Coupled Ocean-Atmosphere Model  被引量:2
20
作者 俞永强 郭裕福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第3期273-288,共16页
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with t... In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that bythe corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 yearintegrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAPAGCM, i.e., no serious 'climate drift' occurs in the CGCM simulation. A comparison of the results from AGCM andCGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM ismuch greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and NorthAtlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not existin the AGCM simulation.The interannual variability of climate may be classified into two typest one is the variation of the annual mean,another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type ofvariability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannualvariability are found to have different spatial and temporal characteristics. 展开更多
关键词 interannual variability of climate Coupled ocean-atmosphere model
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部