期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury
1
作者 Jiewen Chen Xiaolin Zeng +6 位作者 Le Wang Wenwu Zhang Gang Li Xing Cheng Peiqiang Su Yong Wan Xiang Li 《Neural Regeneration Research》 SCIE CAS 2025年第2期557-573,共17页
Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-e... Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord. 展开更多
关键词 ASTROCYTES AXL cell polarization GAS6 Hippo signal inflammatory micro-environment intercellular interaction MICROGLIA single-cell sequencing spinal cord injury
下载PDF
Computational Investigation of Cell Migration Behavior in a Confluent Epithelial Monolayer
2
作者 Jie Bai Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期551-565,共15页
Cell migration plays a significant role in many biological activities,yet the physical mechanisms of cell migration are still not well understood.In this study,a continuum physics-based epithelial monolayer model incl... Cell migration plays a significant role in many biological activities,yet the physical mechanisms of cell migration are still not well understood.In this study,a continuum physics-based epithelial monolayer model including the intercellular interaction was employed to study the cell migration behavior in a confluent epithelial monolayer at constant cell density.The epithelial cell was modeled as isotropic elastic material.Through finite element simulation,the results revealed that themotile cellwas subjected to higher stress than the other jammed cells during the migration process.Cell stiffness was implied to play a significant role in epithelial cell migration behavior.Higher stiffness results in smaller displacement and lower migration speed. 展开更多
关键词 Epithelial monolayer cell migration cell stiffness intercellular interactions finite element simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部