The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the la...The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.展开更多
At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a pr...At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a c...With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.展开更多
This study analyzes the process of electric power system integration in various regions worldwide.This process is implemented by creating both interstate electric ties and power grids.The analysis is comprehensive and...This study analyzes the process of electric power system integration in various regions worldwide.This process is implemented by creating both interstate electric ties and power grids.The analysis is comprehensive and examines the system,spatial,technical,organizational,and market aspects of the integration.Various countries,including developed countries such as Europe and North America,as well as economically developing countries such as Central America and Africa,are involved in this process.However,the rates and scales of electric power integration differ across various regions worldwide.The analysis shows that the process of electric power integration,which has decades of history,is still ongoing,despite the growth of other trends,such as the development of distributed generation.Further electricity integration is expected to lead to the formation of a global power interconnection in the long term.展开更多
For a large-scale high voltage direct current (HVDC)asynchronous interconnected power grid, the frequency issue atthe power sending side under DC faults is a crucial problem.To solve this problem, based on rotor motio...For a large-scale high voltage direct current (HVDC)asynchronous interconnected power grid, the frequency issue atthe power sending side under DC faults is a crucial problem.To solve this problem, based on rotor motion equations, theeffect of unbalanced power on the system frequency under DCfaults is analyzed. The characteristics and dynamic developmentprocess of frequencies after the injection of disturbances areanalyzed. In addition, the actions and coordinated strategies ofvarious frequency control measures are also investigated. Basedon the testing projects of an asynchronous interconnection in theChina Southern Power Grid (CSG), the frequency features arestudied according to the measured PMU data. The outcome showsthat the frequency problem of the Yunnan Power Grid after anasynchronous interconnection can be solved and controlled. Italso shows that the frequency limit control (FLC) is importantfor the frequency regulation of large scale HVDC asynchronousinterconnected DC power grids. As demonstrated, DC FLC caneffectively suppress the deviation of the transient frequency.However, reasonable frequency regulation parameters shouldbe set and other area frequency control measures should becoordinated to maintain the frequency stability of the system.展开更多
基金funded by the State Grid Science and Technology Research Program:“Research on coordination development mode and reliability evaluation of source,network,load and storage considering the safety requirements(No.B3440818K005)”
文摘The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.
文摘At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
基金the Science and Technology Project of Global Energy Interconnection Group Co.,Ltd.(No.524500180014).
文摘With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.
基金the State Assignment Project(No.FWEU-2021-0001)of the Fundamental Research Program of the Russian Federation 2021-2030.
文摘This study analyzes the process of electric power system integration in various regions worldwide.This process is implemented by creating both interstate electric ties and power grids.The analysis is comprehensive and examines the system,spatial,technical,organizational,and market aspects of the integration.Various countries,including developed countries such as Europe and North America,as well as economically developing countries such as Central America and Africa,are involved in this process.However,the rates and scales of electric power integration differ across various regions worldwide.The analysis shows that the process of electric power integration,which has decades of history,is still ongoing,despite the growth of other trends,such as the development of distributed generation.Further electricity integration is expected to lead to the formation of a global power interconnection in the long term.
文摘For a large-scale high voltage direct current (HVDC)asynchronous interconnected power grid, the frequency issue atthe power sending side under DC faults is a crucial problem.To solve this problem, based on rotor motion equations, theeffect of unbalanced power on the system frequency under DCfaults is analyzed. The characteristics and dynamic developmentprocess of frequencies after the injection of disturbances areanalyzed. In addition, the actions and coordinated strategies ofvarious frequency control measures are also investigated. Basedon the testing projects of an asynchronous interconnection in theChina Southern Power Grid (CSG), the frequency features arestudied according to the measured PMU data. The outcome showsthat the frequency problem of the Yunnan Power Grid after anasynchronous interconnection can be solved and controlled. Italso shows that the frequency limit control (FLC) is importantfor the frequency regulation of large scale HVDC asynchronousinterconnected DC power grids. As demonstrated, DC FLC caneffectively suppress the deviation of the transient frequency.However, reasonable frequency regulation parameters shouldbe set and other area frequency control measures should becoordinated to maintain the frequency stability of the system.