期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Polar interface and surface optical vibration spectra in multi-layer wurtzite quantum wires: transfer matrix method 被引量:1
1
作者 张立 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第5期1101-1109,共9页
The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR... The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR) are derived and studied by employing the transfer matrix method in the dielectric continuum approximation and Loudon's uniaxial crystal model. A numerical calculation of a freestanding wurtzite GaN/AlN QWR is performed. The results reveal that for a relatively large azimuthal quantum number m or wave-number kz in the free z-direction, there exist two branches of IO phonon modes localized at the interface, and only one branch of SO mode localized at the surface in the system. The degenerating behaviours of the IO and SO phonon modes in the wurtzite QWR have also been clearly observed for a small kz or m. The limiting frequency properties of the IO and SO modes for large kz and m have been explained reasonably from the mathematical and physical viewpoints. The calculations of electron-phonon coupling functions show that the high-frequency IO phonon branch and SO mode play a more important role in the electron phonon interaction. 展开更多
关键词 interface and surface optical phonons multi-layer cylindrical heterostructures wurtzite quantum wires
下载PDF
Interface and Surface Properties of Nano-hydroxyapatite /Poly (1,4-PhenyleneSulfide)-Poly(2,4-Phenylene Sulfide Acid) Copolymer Composite
2
作者 严永刚 LI Yubao +3 位作者 Wei Jie Zuo Yi J.G.C.Wolke J.A.Jansen 《High Technology Letters》 EI CAS 2003年第1期26-30,共5页
The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are so... The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength. 展开更多
关键词 PPS-PPSA copolymer nanohydroxyapatite composite interface and surface biomaterials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部