Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment ...Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.展开更多
Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Th...Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Thus, the waxy crude oil emulsion viscoelastic behavior for deep sea transportation and restarting pipeline safety is particularly important. By means of MASIII HAAKE rheometer which is produced by German company, waxy crude oil emulsion viscoelastic behavior is explored at different volumetric water contents and different shear stresses. By analyzing the rate of change of shear rate in the initial stage, the influence rules of viscoelastic properties were summarized, with the change of volumetric water content and the applied shear stress and based on the experimental results, the law of emulsion is explained from the micro level. It is proposed that brittle fracture exists between wax crystals, and flexible fracture was found in the interaction between water droplets and wax crystals.展开更多
Studies on nonlinear behavior at oil/water interface membrane were performed. This system showed rhythmic oscillations and chaos of electrical potential in a given concentration domain. The nonlinear behavior response...Studies on nonlinear behavior at oil/water interface membrane were performed. This system showed rhythmic oscillations and chaos of electrical potential in a given concentration domain. The nonlinear behavior response at the liquid membrane apparently resembled that of biological chemoreceptive membrane. The possibility of developing a new type of chemical sensor with the ability to simulate substance equilibrium in living organisms was suggested in the paper.展开更多
In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. ...In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized.展开更多
The switchable oil layer driven by electrowetting gives visible color and light valve control, which is the basis of Electro-Fluidic Displays. The colored oil’s property is a key factor that influences the Electro-Fl...The switchable oil layer driven by electrowetting gives visible color and light valve control, which is the basis of Electro-Fluidic Displays. The colored oil’s property is a key factor that influences the Electro-Fluidic Displays switching behavior. A purple oil was formulated by the oil-soluble purple dye in decane in this study. The dye molecule itself is nonpolar and it doesn’t dissolve in water. The concentration of colored oil influenced the oil/water interfacial tension and oil viscosity. The relationship of EFD switching behavior with oil/water interfacial tension, oil viscosity, and oil conductivity has been systematically investigated. The oil/water interfacial tension decreased with increasing oil concentration, in the meanwhile, the conductivity increased. Oil conductivity was one of the key factors that influenced the Electro-Fluidic Displays optical property. We found for the first time that at the lower oil concentration (2% - 10%), the interfacial tension plays a main role effect on the rupture voltage and response time, but as the conductivity of higher concentration of colored oil increased (at 20%), the rupture voltage-controlled both by conductivity and interfacial tension.展开更多
随着石油资源的日益紧张,提高油田开采效率成了石油行业面临的主要挑战。选用3种不同的化学剂(PAM、SDBS、PAA)并通过测定岩心渗透率和油水界面张力进行驱油效率实验。实验结果显示,PAA在提高岩石渗透率方面表现最为突出,从130.14 m D...随着石油资源的日益紧张,提高油田开采效率成了石油行业面临的主要挑战。选用3种不同的化学剂(PAM、SDBS、PAA)并通过测定岩心渗透率和油水界面张力进行驱油效率实验。实验结果显示,PAA在提高岩石渗透率方面表现最为突出,从130.14 m D增加到212.43 m D,增幅为63.2%,而SDBS则在降低油水界面张力方面表现最佳,从38.92 m N·m^(-1)降至21.00 m N·m^(-1),降低了46.2%。此外,在中温(40℃)和中压(20 MPa)以及适中的注入流量(100 L·min^(-1))下,驱油效率达到最优。化学剂在改变岩石孔隙结构及降低油水界面张力方面的作用,共同促进了油水流动性的提升,从而显著增强了整体的驱油效果。研究结果对于指导实际油田作业中化学剂的选择和应用具有重要的参考价值,为油田开发提供了新的视角和方法。展开更多
The interfacial behavior between heavy oil and steam is one of the vital pointers affecting the development efficiency of steam injection for heavy oil recovery.However,the underlying mechanisms of the interaction bet...The interfacial behavior between heavy oil and steam is one of the vital pointers affecting the development efficiency of steam injection for heavy oil recovery.However,the underlying mechanisms of the interaction between heavy oil and steam at high temperature and pressure remain elusive.Herein,we have investigated the molecular-scale interactions on the interface between heavy oil droplet and steam phase at high temperatures(473 K,498 K,523 K,and 548 K)via molecular dynamics simulations.The results show that the interfacial thickness between heavy oil droplet and steam phase increases gradually with temperature,while the interfacial tension decreases constantly.Moreover,high temperature can damage hydrogen bonds,resulting in lower interaction energy between heavy oil droplet and steam phase.The radial distribution function results demonstrate that the interaction between heavy oil fractions and steam phase can be weakened by high temperature.Furthermore,the evolutions of interface are directly observed by the two-dimension density cloud maps at different temperatures,and the mean square displacement and self-diffusion coefficient demonstrate the evolution mechanism of heavy oil fractions and steam.In particular,the heavy oil/steam systems with asphaltenes at the interface are more likely to achieve high diffusivity and emulsifying capacity.This work provides a molecular-level insight for understanding the interfacial interaction mechanisms of heavy oil/steam systems during a steam injection process.展开更多
In recent years,controlling the salinity and composition of the injected water has become an emerging enhanced oil recovery(EOR)technique,often described as low salinity(LS)waterflooding.This work is done with the int...In recent years,controlling the salinity and composition of the injected water has become an emerging enhanced oil recovery(EOR)technique,often described as low salinity(LS)waterflooding.This work is done with the intention to contribute to the ongoing discussions about LS waterflooding mechanism(s).For this purpose,a series of different experiments were conducted.At first,the effect of salinity on the interfacial tension(IFT)and the contact angle was evaluated with a crude oil sample.Then to achieve more accurate results in observing oil/water interface,similar IFT experiments were also carried out on a synthetic oil containing asphaltenes.Thereafter,microscopic visualization using glass micromodel was performed on the interface of the synthetic oil sample and brines.Four brine solutions including Sea Water(SW),it's dilutions and formation water(FW)were used for various experiments.Finally,to investigate the presented mechanism by other authors,a series of Environmental Scanning Electron Microscopy(ESEM)analysis on the synthetic oil was carried out to understand better the phase behaviour after contacting both synthetic oil and water phases from the micromodel experiment.Based on the existing mechanism,there exists an optimal concentration beyond which dilution is no longer an effective process.展开更多
Hollow calcium silicate microparticles were prepared by mixing a water-in-oil (W/O) emulsion containing silicate ions in aqueous phase with an oil phase containing a calcium/di-2-ethylhexyl phosphoric acid (D2EHPA) co...Hollow calcium silicate microparticles were prepared by mixing a water-in-oil (W/O) emulsion containing silicate ions in aqueous phase with an oil phase containing a calcium/di-2-ethylhexyl phosphoric acid (D2EHPA) complex. The inorganic precipitation reaction at the oil-water interface was accelerated by using a simple W/O emulsion. Hollow microparticles were obtained when the mole ratio of D2EHPA and calcium in the oil phase was nearly 2:1. The shell formation of the par-ticles depended on the acceleration of the precipitation reaction, which could be accomplished by controlling the concentrations of the calcium and silicate ions.展开更多
The combination of injection of lower saline brine and surfactant will increase recovery in sandstone rocks than either when any of the techniques is singly applied. In this work, core IFT test, pH test, flooding expe...The combination of injection of lower saline brine and surfactant will increase recovery in sandstone rocks than either when any of the techniques is singly applied. In this work, core IFT test, pH test, flooding experiments and measurement of dispersion were performed on four core samples which were grouped into two: group A which were not fired and group B which were fired at a temperature of 500°C for 24 hours. Two low saline brines were prepared: LS1 which was derived by the dilution of seawater four times and LS2 which was derived by ten times diluting the seawater. The surfactant used was ethoxylated alcohol surfactant. Coreflood experiments were then performed on the rock samples starting with the injection of low saline followed by low saline brine combined with surfactant (LSS). Results from the experiments show that with the injection of LS1 brine and LSS1 higher increment in recoveries were obtained for group B than for group A cores. The same trend was also noticed with the injection of LS2 and LSS2. From the results, LS1 gave higher increment in oil recovery than LS2. Also LSS1 gave higher recoveries when compared with LSS2. In all the cases tested, core samples which were fired gave higher recoveries even though they had low permeabilities of 993 md for sample 3 and 1017 md for sample 4 than those which were not fired with higher permeabilities of 1050 md and 1055 md for samples 1 and 2 respectively. This was attributed to the alteration of wettability as well as that of permeability caused by sample firing. The dispersion profiles of the rock samples show that all samples are homogeneous.展开更多
文摘Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.
文摘Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Thus, the waxy crude oil emulsion viscoelastic behavior for deep sea transportation and restarting pipeline safety is particularly important. By means of MASIII HAAKE rheometer which is produced by German company, waxy crude oil emulsion viscoelastic behavior is explored at different volumetric water contents and different shear stresses. By analyzing the rate of change of shear rate in the initial stage, the influence rules of viscoelastic properties were summarized, with the change of volumetric water content and the applied shear stress and based on the experimental results, the law of emulsion is explained from the micro level. It is proposed that brittle fracture exists between wax crystals, and flexible fracture was found in the interaction between water droplets and wax crystals.
文摘Studies on nonlinear behavior at oil/water interface membrane were performed. This system showed rhythmic oscillations and chaos of electrical potential in a given concentration domain. The nonlinear behavior response at the liquid membrane apparently resembled that of biological chemoreceptive membrane. The possibility of developing a new type of chemical sensor with the ability to simulate substance equilibrium in living organisms was suggested in the paper.
基金the EOR Center at University Technology Petronas for providing financial support
文摘In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized.
文摘The switchable oil layer driven by electrowetting gives visible color and light valve control, which is the basis of Electro-Fluidic Displays. The colored oil’s property is a key factor that influences the Electro-Fluidic Displays switching behavior. A purple oil was formulated by the oil-soluble purple dye in decane in this study. The dye molecule itself is nonpolar and it doesn’t dissolve in water. The concentration of colored oil influenced the oil/water interfacial tension and oil viscosity. The relationship of EFD switching behavior with oil/water interfacial tension, oil viscosity, and oil conductivity has been systematically investigated. The oil/water interfacial tension decreased with increasing oil concentration, in the meanwhile, the conductivity increased. Oil conductivity was one of the key factors that influenced the Electro-Fluidic Displays optical property. We found for the first time that at the lower oil concentration (2% - 10%), the interfacial tension plays a main role effect on the rupture voltage and response time, but as the conductivity of higher concentration of colored oil increased (at 20%), the rupture voltage-controlled both by conductivity and interfacial tension.
文摘随着石油资源的日益紧张,提高油田开采效率成了石油行业面临的主要挑战。选用3种不同的化学剂(PAM、SDBS、PAA)并通过测定岩心渗透率和油水界面张力进行驱油效率实验。实验结果显示,PAA在提高岩石渗透率方面表现最为突出,从130.14 m D增加到212.43 m D,增幅为63.2%,而SDBS则在降低油水界面张力方面表现最佳,从38.92 m N·m^(-1)降至21.00 m N·m^(-1),降低了46.2%。此外,在中温(40℃)和中压(20 MPa)以及适中的注入流量(100 L·min^(-1))下,驱油效率达到最优。化学剂在改变岩石孔隙结构及降低油水界面张力方面的作用,共同促进了油水流动性的提升,从而显著增强了整体的驱油效果。研究结果对于指导实际油田作业中化学剂的选择和应用具有重要的参考价值,为油田开发提供了新的视角和方法。
基金supported by the Open Fund(CCL2021RCPS0518KQN)of State Key Laboratory of Offshore Oil Exploitation.
文摘The interfacial behavior between heavy oil and steam is one of the vital pointers affecting the development efficiency of steam injection for heavy oil recovery.However,the underlying mechanisms of the interaction between heavy oil and steam at high temperature and pressure remain elusive.Herein,we have investigated the molecular-scale interactions on the interface between heavy oil droplet and steam phase at high temperatures(473 K,498 K,523 K,and 548 K)via molecular dynamics simulations.The results show that the interfacial thickness between heavy oil droplet and steam phase increases gradually with temperature,while the interfacial tension decreases constantly.Moreover,high temperature can damage hydrogen bonds,resulting in lower interaction energy between heavy oil droplet and steam phase.The radial distribution function results demonstrate that the interaction between heavy oil fractions and steam phase can be weakened by high temperature.Furthermore,the evolutions of interface are directly observed by the two-dimension density cloud maps at different temperatures,and the mean square displacement and self-diffusion coefficient demonstrate the evolution mechanism of heavy oil fractions and steam.In particular,the heavy oil/steam systems with asphaltenes at the interface are more likely to achieve high diffusivity and emulsifying capacity.This work provides a molecular-level insight for understanding the interfacial interaction mechanisms of heavy oil/steam systems during a steam injection process.
文摘In recent years,controlling the salinity and composition of the injected water has become an emerging enhanced oil recovery(EOR)technique,often described as low salinity(LS)waterflooding.This work is done with the intention to contribute to the ongoing discussions about LS waterflooding mechanism(s).For this purpose,a series of different experiments were conducted.At first,the effect of salinity on the interfacial tension(IFT)and the contact angle was evaluated with a crude oil sample.Then to achieve more accurate results in observing oil/water interface,similar IFT experiments were also carried out on a synthetic oil containing asphaltenes.Thereafter,microscopic visualization using glass micromodel was performed on the interface of the synthetic oil sample and brines.Four brine solutions including Sea Water(SW),it's dilutions and formation water(FW)were used for various experiments.Finally,to investigate the presented mechanism by other authors,a series of Environmental Scanning Electron Microscopy(ESEM)analysis on the synthetic oil was carried out to understand better the phase behaviour after contacting both synthetic oil and water phases from the micromodel experiment.Based on the existing mechanism,there exists an optimal concentration beyond which dilution is no longer an effective process.
文摘Hollow calcium silicate microparticles were prepared by mixing a water-in-oil (W/O) emulsion containing silicate ions in aqueous phase with an oil phase containing a calcium/di-2-ethylhexyl phosphoric acid (D2EHPA) complex. The inorganic precipitation reaction at the oil-water interface was accelerated by using a simple W/O emulsion. Hollow microparticles were obtained when the mole ratio of D2EHPA and calcium in the oil phase was nearly 2:1. The shell formation of the par-ticles depended on the acceleration of the precipitation reaction, which could be accomplished by controlling the concentrations of the calcium and silicate ions.
文摘The combination of injection of lower saline brine and surfactant will increase recovery in sandstone rocks than either when any of the techniques is singly applied. In this work, core IFT test, pH test, flooding experiments and measurement of dispersion were performed on four core samples which were grouped into two: group A which were not fired and group B which were fired at a temperature of 500°C for 24 hours. Two low saline brines were prepared: LS1 which was derived by the dilution of seawater four times and LS2 which was derived by ten times diluting the seawater. The surfactant used was ethoxylated alcohol surfactant. Coreflood experiments were then performed on the rock samples starting with the injection of low saline followed by low saline brine combined with surfactant (LSS). Results from the experiments show that with the injection of LS1 brine and LSS1 higher increment in recoveries were obtained for group B than for group A cores. The same trend was also noticed with the injection of LS2 and LSS2. From the results, LS1 gave higher increment in oil recovery than LS2. Also LSS1 gave higher recoveries when compared with LSS2. In all the cases tested, core samples which were fired gave higher recoveries even though they had low permeabilities of 993 md for sample 3 and 1017 md for sample 4 than those which were not fired with higher permeabilities of 1050 md and 1055 md for samples 1 and 2 respectively. This was attributed to the alteration of wettability as well as that of permeability caused by sample firing. The dispersion profiles of the rock samples show that all samples are homogeneous.