Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test ...Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test (FWT). The test results show that the interfacial peel strength is lower than the interlaminar peel strength in FWT test. The mode I interracial fracture toughness (GIC) of sandwich structures containing a pre-crack on the upper face/core interface is determined by modified cracked sandwich beam (MCSB) experiment. It is found that the crack propagates unsynchronously on the two side of the specimen and the propagation of interfacial debonding always stays on the face/core interface during the MCSB tests. In order to simulate the failure of metal foam composite sandwich structures, a computational model based on the Tsai-Hill failure criterion and cohesive zone model is used. By comparing with experiment results, it can be concluded that the computational model can validly simulate the interracial failure of metal foam composite sandwich structures with reasonable accuracy.展开更多
The thermal fatigue behaviour of an air plasma sprayed thermal barrier coating was investigated. And also the interfacial strengths of thermal barrier coated specimens subjected to thermal fatigue, as well as a retire...The thermal fatigue behaviour of an air plasma sprayed thermal barrier coating was investigated. And also the interfacial strengths of thermal barrier coated specimens subjected to thermal fatigue, as well as a retired TBC vane were also evaluated by means of an instrumented indentation machine. The results indicated that, (1) the TGO grew at the interface during thermal fatigue cycle as a function of the exposure time at elevated temperature; (2) the microcracks were initiated in the top coating and at the interface after thermal cycle tests; (3) the interfacial strength of TBC, which was evaluated by the indentation method, increased with the thermal cycles; (4) the interfacial strength of the retired TBC vane was almost equal with that of the as-sprayed TBC specimen.展开更多
基金supported by the Major State Basic Research Development Program of China(973Program)under the contract No.2006CB601206
文摘Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test (FWT). The test results show that the interfacial peel strength is lower than the interlaminar peel strength in FWT test. The mode I interracial fracture toughness (GIC) of sandwich structures containing a pre-crack on the upper face/core interface is determined by modified cracked sandwich beam (MCSB) experiment. It is found that the crack propagates unsynchronously on the two side of the specimen and the propagation of interfacial debonding always stays on the face/core interface during the MCSB tests. In order to simulate the failure of metal foam composite sandwich structures, a computational model based on the Tsai-Hill failure criterion and cohesive zone model is used. By comparing with experiment results, it can be concluded that the computational model can validly simulate the interracial failure of metal foam composite sandwich structures with reasonable accuracy.
文摘The thermal fatigue behaviour of an air plasma sprayed thermal barrier coating was investigated. And also the interfacial strengths of thermal barrier coated specimens subjected to thermal fatigue, as well as a retired TBC vane were also evaluated by means of an instrumented indentation machine. The results indicated that, (1) the TGO grew at the interface during thermal fatigue cycle as a function of the exposure time at elevated temperature; (2) the microcracks were initiated in the top coating and at the interface after thermal cycle tests; (3) the interfacial strength of TBC, which was evaluated by the indentation method, increased with the thermal cycles; (4) the interfacial strength of the retired TBC vane was almost equal with that of the as-sprayed TBC specimen.