In critical care medicine,sepsis is a dangerous systemic condition that is highly prevalent and is associated with high morbidity and mortality rates^([1]).The high mortality rate associated with sepsis is closely rel...In critical care medicine,sepsis is a dangerous systemic condition that is highly prevalent and is associated with high morbidity and mortality rates^([1]).The high mortality rate associated with sepsis is closely related to multi-organ dysfunction,with heart injury being particularly critical and considered the starting point of multi-organ injury^([2]).展开更多
Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various disea...Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various diseases,including ischemic stroke and neurodegenerative diseases.However,whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear.Therefore,in the present study,we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms.We established a traumatic brain injury rat model using a modified weight drop method.P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury.Severe neurological deficits were found in rats after traumatic brain injury,with deterioration in balance,walking function,and learning memory.Furthermore,hematoxylin and eosin staining showed significant neuronal cell damage,while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis.The presence of autolysosomes was observed using transmission electron microscope.P7C3-A20 treatment reversed these pathological features.Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ)autophagy protein,apoptosis-related proteins(namely,Bcl-2/adenovirus E1B 19-kDa-interacting protein 3[BNIP3],and Bcl-2 associated x protein[Bax]),and elevated ubiquitin-binding protein p62(p62)autophagy protein expression.Thus,P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by...Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of ...Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apo...In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing.展开更多
Objective:To evaluate the anticancer effect of ellagic acid on gastric cancer cells.Methods:MTT assay was used to evaluate the effect of ellagic acid at different concentrations(0.5-100μg/mL)on gastric cancer AGS cel...Objective:To evaluate the anticancer effect of ellagic acid on gastric cancer cells.Methods:MTT assay was used to evaluate the effect of ellagic acid at different concentrations(0.5-100μg/mL)on gastric cancer AGS cells.RT-qPCR and Western blot analyses were applied to assess apoptosis(BCL-2,CASP-3,and BAX)and autophagy(LC3,ATG5,and BECN1)in AGS cells treated with ellagic acid.The expression of invasion-related markers including TP53,CDKN2A,and PTEN was determined.In addition,cell cycle markers including cyclin A,B,D,and E were measured by ELISA.Oxidative stress markers were evaluated using spectrophotometry.Results:Ellagic acid inhibited the proliferation of AGS cells in a concentration-and time-dependent manner.The expression of BCL-2 was significantly decreased(P<0.05)and CASP-3 and BAX were markedly increased(P<0.01)in AGS cells treated with ellagic acid.However,this compound induced no significant changes in the expression levels of LC3,ATG5,and BECN1(P>0.05).Moreover,the oxidative stress markers including SOD,TAC,and MDA were increased by ellagic acid(P<0.01).Conclusions:Ellagic acid can inhibit cell proliferation,induce apoptosis,and modulate oxidative stress in AGS cells.However,further in vivo and molecular studies are needed to verify its anticancer efficacy.展开更多
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate...Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.展开更多
Objectives:The antitumor effects of pyropheophorbide-αmethyl ester-mediated photodynamic therapy(MPPa-PDT)were observed in several cancers.The objective of this investigation was to examine the antineoplastic efficacy...Objectives:The antitumor effects of pyropheophorbide-αmethyl ester-mediated photodynamic therapy(MPPa-PDT)were observed in several cancers.The objective of this investigation was to examine the antineoplastic efficacy of MPPa-PDT acting on lung carcinoma A549 cells and further elaborate mechanisms.Methods:The viability of A549 cells was examined with cell counting kit-8 after MPPa-PDT disposal.Hoechst 33342 staining,monodansylcadaverine(MDC)staining,and transmission electron microscopy were employed to observe apoptotic bodies and autophagic vesicles.Flow cytometry with Annexin V/propidium iodide(PI)labeling objectively assessed cell death.The expression of associated proteins,including Caspase-3,Beclin-1,LC-3II,and mitogen-activated protein kinase(MAPK)families concluding c-jun NH2-terminal kinase(JNK),p38 MAPK,and extracellular signal-regulated kinase 1/2(ERK)were identified by Western blotting.Results:Prolonged exposure to MPPa-PDT gradually decreased lung cancer A549 cell viability.Apoptosis and autophagy activity were higher in the MPPa-PDT cohort in comparison to the control group.Meanwhile,autophagy inhibition enhanced cell-killing efficacy apparently.Besides,the JNK and p38 MAPK pathways were implicated in MPPa-PDT-triggered apoptosis and autophagy.Conclusions:This study demonstrated that JNK and p38 MAPK were engaged in MPPa-PDT-mediated apoptosis and autophagy in lung carcinoma A549 cells.展开更多
AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjuncti...AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjunctival tissues were collected from the superior area of the same patient’s eye(n=33).The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reversetranscription polymerase chain reaction(RT-qPCR)were analyzed.Three distinct siRNA sequences targeting hsa_circ_0007482,along with a negative control sequence,were transfected into HPFs.Cell proliferation was assessed using the cell counting kit-8.Expression levels of Ki67,proliferating cell nuclear antigen(PCNA),Cyclin D1,Bax,B-cell lymphoma-2(Bcl-2),and Caspase-3 were measured via RT-qPCR.Immunofluorescence staining was employed to detect Ki67 and vimentin expressions.Apoptosis was evaluated using flow cytometry.RESULTS:Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues(P<0.001).Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity,thickness,and vascular density.Knockdown of hsa_circ_0007482 inhibited cell proliferation,reducing the mRNA expression of Ki67,PCNA,and Cyclin D1 in HPFs.Hsa_circ_0007482 knockdown induced apoptosis,increasing mRNA expression levels of Bax and Caspase-3,while decreasing Bcl-2 expression in HPFs.Additionally,hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs.CONCLUSION:The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs.There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium.展开更多
Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a...Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a new type of1,2,3,4-tetrahydro-β-carboline(THC)derivatives and evaluated the in vitro and in vivo bioactivities against the Xanthomonas oryzae pv.oryzae(Xoo),Xanthomonas axonopodis pv.citri(Xac),and Pseudomonas syringae pv.actinidiae(Psa).The in vitro bioassay results exhibited that most title molecules possessed good activity toward the three plant pathogenic bacteria,the compound A17 showed the most active against Xoo and Xac with EC50 values of 7.27 and 4.89 mg mL^(-1)respectively,and compound A8 exhibited the best inhibitory activity against Psa with EC50value of 4.87 mg mL^(-1).Pot experiments showed that compound A17 exhibited excellent in vivo antibacterial activities to manage rice bacterial leaf blight and citrus bacterial canker,with protective efficiencies of 52.67 and 79.79%at 200 mgmL^(-1),respectively.Meanwhile,compound A8 showed good control efficiency(84.31%)against kiwifruit bacterial canker at 200 mg mL^(-1).Antibacterial mechanism suggested that these compounds could interfere with the balance of the redox system,damage the cell membrane,and induce the apoptosis of Xoo cells.Taken together,our study revealed that tetrahydro-β-carboline derivatives could be a promising candidate model for novel broadspectrum bactericides.展开更多
Background The reproductive performance of chickens mainly depends on the development of follicles.Abnor-mal follicle development can lead to decreased reproductive performance and even ovarian disease among chick-ens...Background The reproductive performance of chickens mainly depends on the development of follicles.Abnor-mal follicle development can lead to decreased reproductive performance and even ovarian disease among chick-ens.Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer.In recent years,the involvement of circRNAs in follicle development and atresia regulation has been confirmed.Results In the present study,we used healthy and atretic chicken follicles for circRNA RNC-seq.The results showed differential expression of circRALGPS2.It was then confirmed that circRALGPS2 can translate into a protein,named cir-cRALGPS2-212aa,which has IRES activity.Next,we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1.Conclusions Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.展开更多
Background:Alpha/beta hydrolase domain-containing protein 17C(ABHD17C)is a depalmitoylation enzyme that removes the S-palmitoylation of targeted proteins.The hepatocellular carcinoma(HCC)cells SNU449 and Hep3B use ABH...Background:Alpha/beta hydrolase domain-containing protein 17C(ABHD17C)is a depalmitoylation enzyme that removes the S-palmitoylation of targeted proteins.The hepatocellular carcinoma(HCC)cells SNU449 and Hep3B use ABHD17C as an oncogene;however,the exact mechanism of this action is yet unknown.Methods:The expression of ABHD17C in liver cancer tissues was analyzed by bioinformatics,and the expression of ABHD17C in clinical liver cancer tissues and adjacent normal tissues was detected.Then,the proliferative viability of HCC cells after overexpression or knockdown of ABHD17C was examined,and pyroptosis and apoptosis proteins were detected.Results:ABHD17C was overexpressed in human HCC tissues as well as numerous HCC cell lines.Depletion of ABHD17C caused reduced viability,cell cycle arrest,and defective invasion and migration in HCC cells,while overexpression of ABHD17C exhibited the opposite effect.Moreover,we discovered that the knockdown of ABHD17C resulted in enhanced apoptotic and pyroptotic phenotypes of HCC cells,whereas overexpression of ABHD17C attenuated such phenotypes.Conclusions:It suggests that ABHD17C contributes to HCC carcinogenesis,making it a promising target for medication treatment.展开更多
Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is...Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.展开更多
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra...Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.展开更多
BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determ...BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B.展开更多
基金supported by Jiangsu Traditional Chinese Medicine Science and Technology Development Program(MS2022099)The Postgraduate Research&Practice Innovation Program of Jiangsu Ocean University(No.KYCX2022-34)。
文摘In critical care medicine,sepsis is a dangerous systemic condition that is highly prevalent and is associated with high morbidity and mortality rates^([1]).The high mortality rate associated with sepsis is closely related to multi-organ dysfunction,with heart injury being particularly critical and considered the starting point of multi-organ injury^([2]).
基金supported by National Natural Science Foundation of China,No.32102745(to XL).
文摘Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various diseases,including ischemic stroke and neurodegenerative diseases.However,whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear.Therefore,in the present study,we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms.We established a traumatic brain injury rat model using a modified weight drop method.P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury.Severe neurological deficits were found in rats after traumatic brain injury,with deterioration in balance,walking function,and learning memory.Furthermore,hematoxylin and eosin staining showed significant neuronal cell damage,while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis.The presence of autolysosomes was observed using transmission electron microscope.P7C3-A20 treatment reversed these pathological features.Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ)autophagy protein,apoptosis-related proteins(namely,Bcl-2/adenovirus E1B 19-kDa-interacting protein 3[BNIP3],and Bcl-2 associated x protein[Bax]),and elevated ubiquitin-binding protein p62(p62)autophagy protein expression.Thus,P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金This project was supported by Science and technology project of Xiamen Medical College(K2023-08)the National Natural Science Foundation of China(No.82170299 to Shan Hongli,No.82003757 to Lyu Lifang).
文摘Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
基金supported by grants from Zhejiang Provincial Natural Science Foundation of China(No.LY19H260003)Zhejiang Medical Health Science and Technology Project of China(No.2024KY1661).
文摘Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
基金supported by the National Natural Science Foundation of China(G32072142,31972099)。
文摘In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing.
基金supported by the Heilongjiang Provincial Natural Science Foundation of China(LH2022H063).
文摘Objective:To evaluate the anticancer effect of ellagic acid on gastric cancer cells.Methods:MTT assay was used to evaluate the effect of ellagic acid at different concentrations(0.5-100μg/mL)on gastric cancer AGS cells.RT-qPCR and Western blot analyses were applied to assess apoptosis(BCL-2,CASP-3,and BAX)and autophagy(LC3,ATG5,and BECN1)in AGS cells treated with ellagic acid.The expression of invasion-related markers including TP53,CDKN2A,and PTEN was determined.In addition,cell cycle markers including cyclin A,B,D,and E were measured by ELISA.Oxidative stress markers were evaluated using spectrophotometry.Results:Ellagic acid inhibited the proliferation of AGS cells in a concentration-and time-dependent manner.The expression of BCL-2 was significantly decreased(P<0.05)and CASP-3 and BAX were markedly increased(P<0.01)in AGS cells treated with ellagic acid.However,this compound induced no significant changes in the expression levels of LC3,ATG5,and BECN1(P>0.05).Moreover,the oxidative stress markers including SOD,TAC,and MDA were increased by ellagic acid(P<0.01).Conclusions:Ellagic acid can inhibit cell proliferation,induce apoptosis,and modulate oxidative stress in AGS cells.However,further in vivo and molecular studies are needed to verify its anticancer efficacy.
基金This work was supported by grants from the National Natural Science Foundation of China(52072005 and 51872279).
文摘Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.
基金supported by XiaoganCity Natural Science Foundation of China (Grant/AwardNo. XGKJ2022010004).
文摘Objectives:The antitumor effects of pyropheophorbide-αmethyl ester-mediated photodynamic therapy(MPPa-PDT)were observed in several cancers.The objective of this investigation was to examine the antineoplastic efficacy of MPPa-PDT acting on lung carcinoma A549 cells and further elaborate mechanisms.Methods:The viability of A549 cells was examined with cell counting kit-8 after MPPa-PDT disposal.Hoechst 33342 staining,monodansylcadaverine(MDC)staining,and transmission electron microscopy were employed to observe apoptotic bodies and autophagic vesicles.Flow cytometry with Annexin V/propidium iodide(PI)labeling objectively assessed cell death.The expression of associated proteins,including Caspase-3,Beclin-1,LC-3II,and mitogen-activated protein kinase(MAPK)families concluding c-jun NH2-terminal kinase(JNK),p38 MAPK,and extracellular signal-regulated kinase 1/2(ERK)were identified by Western blotting.Results:Prolonged exposure to MPPa-PDT gradually decreased lung cancer A549 cell viability.Apoptosis and autophagy activity were higher in the MPPa-PDT cohort in comparison to the control group.Meanwhile,autophagy inhibition enhanced cell-killing efficacy apparently.Besides,the JNK and p38 MAPK pathways were implicated in MPPa-PDT-triggered apoptosis and autophagy.Conclusions:This study demonstrated that JNK and p38 MAPK were engaged in MPPa-PDT-mediated apoptosis and autophagy in lung carcinoma A549 cells.
基金Supported by Guangdong Basic and Applied Basic Research Foundation (No.2021A1515111012).
文摘AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjunctival tissues were collected from the superior area of the same patient’s eye(n=33).The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reversetranscription polymerase chain reaction(RT-qPCR)were analyzed.Three distinct siRNA sequences targeting hsa_circ_0007482,along with a negative control sequence,were transfected into HPFs.Cell proliferation was assessed using the cell counting kit-8.Expression levels of Ki67,proliferating cell nuclear antigen(PCNA),Cyclin D1,Bax,B-cell lymphoma-2(Bcl-2),and Caspase-3 were measured via RT-qPCR.Immunofluorescence staining was employed to detect Ki67 and vimentin expressions.Apoptosis was evaluated using flow cytometry.RESULTS:Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues(P<0.001).Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity,thickness,and vascular density.Knockdown of hsa_circ_0007482 inhibited cell proliferation,reducing the mRNA expression of Ki67,PCNA,and Cyclin D1 in HPFs.Hsa_circ_0007482 knockdown induced apoptosis,increasing mRNA expression levels of Bax and Caspase-3,while decreasing Bcl-2 expression in HPFs.Additionally,hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs.CONCLUSION:The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs.There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium.
基金the supports from National Natural Science Foundation of China(21877021,32160661,and 32202359)the Guizhou Provincial S&T Project China(2018[4007])+2 种基金the the Guizhou Province China[Qianjiaohe KY number(2020)004]the Program of Introducing Talents of Discipline to Universities of China(D20023,111 Program)the Guizhou University(GZU)Found for Newly Enrolled Talent China(202229)。
文摘Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a new type of1,2,3,4-tetrahydro-β-carboline(THC)derivatives and evaluated the in vitro and in vivo bioactivities against the Xanthomonas oryzae pv.oryzae(Xoo),Xanthomonas axonopodis pv.citri(Xac),and Pseudomonas syringae pv.actinidiae(Psa).The in vitro bioassay results exhibited that most title molecules possessed good activity toward the three plant pathogenic bacteria,the compound A17 showed the most active against Xoo and Xac with EC50 values of 7.27 and 4.89 mg mL^(-1)respectively,and compound A8 exhibited the best inhibitory activity against Psa with EC50value of 4.87 mg mL^(-1).Pot experiments showed that compound A17 exhibited excellent in vivo antibacterial activities to manage rice bacterial leaf blight and citrus bacterial canker,with protective efficiencies of 52.67 and 79.79%at 200 mgmL^(-1),respectively.Meanwhile,compound A8 showed good control efficiency(84.31%)against kiwifruit bacterial canker at 200 mg mL^(-1).Antibacterial mechanism suggested that these compounds could interfere with the balance of the redox system,damage the cell membrane,and induce the apoptosis of Xoo cells.Taken together,our study revealed that tetrahydro-β-carboline derivatives could be a promising candidate model for novel broadspectrum bactericides.
基金This research was funded by The National Key Research and Development Program of China,grant number 2021YFD1300600China Agriculture Research System of MOF and MARA,grant number CARS-40+1 种基金Sichuan Science and Technology Program,grant number 2021YFYZ0007,2021YFYZ0031 and 2022YFYZ0005National Natural Science Foundation of China Grants,grant number 31972543.
文摘Background The reproductive performance of chickens mainly depends on the development of follicles.Abnor-mal follicle development can lead to decreased reproductive performance and even ovarian disease among chick-ens.Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer.In recent years,the involvement of circRNAs in follicle development and atresia regulation has been confirmed.Results In the present study,we used healthy and atretic chicken follicles for circRNA RNC-seq.The results showed differential expression of circRALGPS2.It was then confirmed that circRALGPS2 can translate into a protein,named cir-cRALGPS2-212aa,which has IRES activity.Next,we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1.Conclusions Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.
基金supported by the Quanzhou High-Level Talents Project(2021C048R).
文摘Background:Alpha/beta hydrolase domain-containing protein 17C(ABHD17C)is a depalmitoylation enzyme that removes the S-palmitoylation of targeted proteins.The hepatocellular carcinoma(HCC)cells SNU449 and Hep3B use ABHD17C as an oncogene;however,the exact mechanism of this action is yet unknown.Methods:The expression of ABHD17C in liver cancer tissues was analyzed by bioinformatics,and the expression of ABHD17C in clinical liver cancer tissues and adjacent normal tissues was detected.Then,the proliferative viability of HCC cells after overexpression or knockdown of ABHD17C was examined,and pyroptosis and apoptosis proteins were detected.Results:ABHD17C was overexpressed in human HCC tissues as well as numerous HCC cell lines.Depletion of ABHD17C caused reduced viability,cell cycle arrest,and defective invasion and migration in HCC cells,while overexpression of ABHD17C exhibited the opposite effect.Moreover,we discovered that the knockdown of ABHD17C resulted in enhanced apoptotic and pyroptotic phenotypes of HCC cells,whereas overexpression of ABHD17C attenuated such phenotypes.Conclusions:It suggests that ABHD17C contributes to HCC carcinogenesis,making it a promising target for medication treatment.
基金supported by the Science and Technology Innovation Program of Hunan Province(Grant Numbers:2021SK1014 and 2022WZ1027)the Colleges and Universities of Hunan Province(Grant Number:HNJG 20200440)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant Number:21B0411)the Scientific Research Project of Changsha Central Hospital(Number:YNKY202201).
文摘Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.
基金supported by the National Natural Science Foundation of China(32272849)the National Key R&D Program of China(2021YFF1000602)the earmarked fund for CARS-35-PIG。
文摘Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.
基金Supported by Natural Science Basic Research Program of Shaanxi Province,No.2021JM-256.
文摘BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B.