Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the ef...Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.展开更多
The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and ...The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.展开更多
Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation ...Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.展开更多
Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicit...Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicity and quick progress in the early iterations. In this work, to accelerate the convergence of the interior point method, few iterations of this generalized algorithm are applied to the Mehrotra’s heuristic, which determines the starting point for the interior point method in the PCx software. Computational experiments in a set of linear programming problems have shown that this approach reduces the total number of iterations and the running time for many of them, including large-scale ones.展开更多
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists...This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.展开更多
1 Introduction Many linear programming models represent large, complex systems consisting of independent subsystems coupled by a common constraint. Such problems arise in industrial and economic planning involved deci...1 Introduction Many linear programming models represent large, complex systems consisting of independent subsystems coupled by a common constraint. Such problems arise in industrial and economic planning involved decision making, resources assignment, production and operation management, and so on. Many’ methods have been proposed for solving the problems with special structure. The decomposition principle of Dantzig-Wolfe leads展开更多
On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear pro...On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear programming, we propose a new framework of primal-dual infeasible interiorpoint method for linear programming problems. Without the strict convexity of the logarithmic barrier function, we get the following results: (a) if the homotopy parameterμcan not reach to zero,then the feasible set of these programming problems is empty; (b) if the strictly feasible set is nonempty and the solution set is bounded, then for any initial point x, we can obtain a solution of the problems by this method; (c) if the strictly feasible set is nonempty and the solution set is unbounded, then for any initial point x, we can obtain a (?)-solution; and(d) if the strictly feasible set is nonempty and the solution set is empty, then we can get the curve x(μ), which towards to the generalized solutions.展开更多
In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence o...In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.展开更多
Transmission line manipulations in a power system are necessary for the execution of preventative or corrective main- tenance in a network, thus ensuring the stability of the system. In this study, primal-dual interio...Transmission line manipulations in a power system are necessary for the execution of preventative or corrective main- tenance in a network, thus ensuring the stability of the system. In this study, primal-dual interior-point methods are used to minimize costs and losses in the generation and transmission of the predispatch active power flow in a hydroelectric system with previously scheduled line manipulations for preventative maintenance, over a period of twenty-four hours. The matrix structure of this problem and the modification that it imposes on the system is also broached in this study. From the computational standpoint, the effort required to solve a problem with or without line manipulations is similar, and the reasons for this are also discussed in this study. Computational results sustain our findings.展开更多
The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point wit...The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point with cutting plane (IP/CP) method is proposed to solve the mixed-integer optimization problem of the electrical power generation expansion planning. The IP/CP method could improve the overall efficiency of the solution and reduce the computational time. Proposed method is combined with the Bender's decomposition technique in order to decompose the generation expansion problem into a master investment problem and a slave operational problem. The numerical example is presented to compare with the effectiveness of the proposed algorithm.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
On the basis of primal-dual approach, we present in this paper an interior point method that gives parametric E-approximate solutions to parametric semi-definite programming problems. The method is finite, and the num...On the basis of primal-dual approach, we present in this paper an interior point method that gives parametric E-approximate solutions to parametric semi-definite programming problems. The method is finite, and the number of its iterations is quasi-polynomially bounded.展开更多
This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimizat...This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems.For this set of problems,parametric perturbed KKT conditions are derived.Subsequently,an interior point technique is developed to solve the parametric perturbed KKT conditions.A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions.Under some mild assumptions,the proposed algorithm is shown to be globally convergent.Numerical results of unconstrained and constrained multi-objective optimization test problems are presented.Also,three performance metrics(modified generational distance,hypervolume,inverted generational distance)are used on some test problems to investigate the efficiency of the proposed algorithm.We also compare the results of the proposed algorithm with the results of some other existing popular methods.展开更多
A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal proble...A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.展开更多
In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These ...In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.展开更多
In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to...In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
文摘Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.
基金The NNSF (10071031) of China and National 973 Project.
文摘The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.
文摘Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.
文摘Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicity and quick progress in the early iterations. In this work, to accelerate the convergence of the interior point method, few iterations of this generalized algorithm are applied to the Mehrotra’s heuristic, which determines the starting point for the interior point method in the PCx software. Computational experiments in a set of linear programming problems have shown that this approach reduces the total number of iterations and the running time for many of them, including large-scale ones.
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
基金Supported by the National Natural Science Fund Finances Projects(71071119)
文摘This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.
基金Project supported in part by the National Natural Science Foundation of China
文摘1 Introduction Many linear programming models represent large, complex systems consisting of independent subsystems coupled by a common constraint. Such problems arise in industrial and economic planning involved decision making, resources assignment, production and operation management, and so on. Many’ methods have been proposed for solving the problems with special structure. The decomposition principle of Dantzig-Wolfe leads
文摘On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear programming, we propose a new framework of primal-dual infeasible interiorpoint method for linear programming problems. Without the strict convexity of the logarithmic barrier function, we get the following results: (a) if the homotopy parameterμcan not reach to zero,then the feasible set of these programming problems is empty; (b) if the strictly feasible set is nonempty and the solution set is bounded, then for any initial point x, we can obtain a solution of the problems by this method; (c) if the strictly feasible set is nonempty and the solution set is unbounded, then for any initial point x, we can obtain a (?)-solution; and(d) if the strictly feasible set is nonempty and the solution set is empty, then we can get the curve x(μ), which towards to the generalized solutions.
基金Supported by the NNSF of China(11026079)Supported by the Youth Backbone Teacher Foundation of Henan Province(173)
文摘In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.
文摘Transmission line manipulations in a power system are necessary for the execution of preventative or corrective main- tenance in a network, thus ensuring the stability of the system. In this study, primal-dual interior-point methods are used to minimize costs and losses in the generation and transmission of the predispatch active power flow in a hydroelectric system with previously scheduled line manipulations for preventative maintenance, over a period of twenty-four hours. The matrix structure of this problem and the modification that it imposes on the system is also broached in this study. From the computational standpoint, the effort required to solve a problem with or without line manipulations is similar, and the reasons for this are also discussed in this study. Computational results sustain our findings.
文摘The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point with cutting plane (IP/CP) method is proposed to solve the mixed-integer optimization problem of the electrical power generation expansion planning. The IP/CP method could improve the overall efficiency of the solution and reduce the computational time. Proposed method is combined with the Bender's decomposition technique in order to decompose the generation expansion problem into a master investment problem and a slave operational problem. The numerical example is presented to compare with the effectiveness of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
基金the National Natural Science Foundation of China!19871016
文摘On the basis of primal-dual approach, we present in this paper an interior point method that gives parametric E-approximate solutions to parametric semi-definite programming problems. The method is finite, and the number of its iterations is quasi-polynomially bounded.
基金financial support from Council of Scientific and Industrial Research,India through a research fellowship(File No.09/1217(0025)/2017-EMR-I)to carry out this research workDebdas Ghosh acknowledges the research grant(MTR/2021/000696)from SERB,India to carry out this research work.
文摘This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems.For this set of problems,parametric perturbed KKT conditions are derived.Subsequently,an interior point technique is developed to solve the parametric perturbed KKT conditions.A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions.Under some mild assumptions,the proposed algorithm is shown to be globally convergent.Numerical results of unconstrained and constrained multi-objective optimization test problems are presented.Also,three performance metrics(modified generational distance,hypervolume,inverted generational distance)are used on some test problems to investigate the efficiency of the proposed algorithm.We also compare the results of the proposed algorithm with the results of some other existing popular methods.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant Nos.J50101, S30104)
文摘A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.
基金the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.
文摘In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.