There is growing evidence that interleukin(IL)-6 plays an important role in neurological and psychiatric disorders.This editorial comments on the study published in the recent issue of the World Journal of Psychiatry,...There is growing evidence that interleukin(IL)-6 plays an important role in neurological and psychiatric disorders.This editorial comments on the study published in the recent issue of the World Journal of Psychiatry,which employed Mendelian randomization to identify a causal relationship between IL-6 receptor blockade and decreased epilepsy incidence.The purpose of this editorial is to highlight the dual effects of IL-6 in epilepsy and its related neuropsychiatric comorbidities.IL-6 plays a critical role in the facilitation of epileptogenesis and maintenance of epileptic seizures and is implicated in neuroinflammatory proce-sses associated with epilepsy.Furthermore,IL-6 significantly influences mood regulation and cognitive dysfunction in patients with epilepsy,highlighting its involvement in neuropsychiatric comorbidities.In summary,IL-6 is not only a pivotal factor in the pathogenesis of epilepsy but also significantly contributes to the emergence of epilepsy-related neuropsychiatric complications.Future resear-ch should prioritize elucidating the specific mechanisms by which IL-6 operates across different subtypes,stages and neuropsychiatric comorbidities of epilepsy,with the aim of developing more precise and effective interventions.Furthermore,the potential of IL-6 as a biomarker for the early diagnosis and prognosis of epile-psy warrants further investigation.展开更多
BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear f...BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.展开更多
Objective: Allergic airway diseases (AADs) are a group of heterogeneous disease mediated by T-helper type 2 (Th2) immune response and characterized with airway inflammation and remodeling, including allergic asth...Objective: Allergic airway diseases (AADs) are a group of heterogeneous disease mediated by T-helper type 2 (Th2) immune response and characterized with airway inflammation and remodeling, including allergic asthma, allergic rhinitis, and chronic rhinosinusitis with allergic background. This review aimed to discuss the abnormal epithelial-mesenchymal crosstalk in the pathogenesis of AADs. Data Sources: Articles referred in this review were collected from the database of PubMed published in English up to January 2018. Study Selection: We had done a literature search using the following terms "allergic airway disease OR asthma OR allergic rhinitis OR chronic sinusitis AND IL-25 OR IL-33 OR thymic stromal lymphopoietin OR fibrocyte". Related original or review articles were included and carefully analyzed. Results: It is now believed that abnormal epithelial-mesenchymal crosstalk underlies the pathogenesis of AADs. However, the key regulatory factors and molecular events involved in this process still remain unclear. Epithelium-derived triple cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), are shown to act on various target cells and promote the Th2 immune response. Circulating fibrocyte is an important mesenchymal cell that can mediate tissue remodeling. We previously found that IL-25-circulating fibrocyte axis was significantly upregulated in patients with asthma, which may greatly contribute to asthmatic airway inflammation and remodeling. Conclusions: In view of the redundancy ofcytokines and "united airway" theory, we propose a new concept that IL-25/IL-33/TSLP-fibrocyte axis may play a vital role in the abnormal epithelial-mesenchymal crosstalk in some endotypes of AADs. This novel idea will guide potential new intervention schema for the common treatment of AADs sharing common pathogenesis in the future.展开更多
文摘There is growing evidence that interleukin(IL)-6 plays an important role in neurological and psychiatric disorders.This editorial comments on the study published in the recent issue of the World Journal of Psychiatry,which employed Mendelian randomization to identify a causal relationship between IL-6 receptor blockade and decreased epilepsy incidence.The purpose of this editorial is to highlight the dual effects of IL-6 in epilepsy and its related neuropsychiatric comorbidities.IL-6 plays a critical role in the facilitation of epileptogenesis and maintenance of epileptic seizures and is implicated in neuroinflammatory proce-sses associated with epilepsy.Furthermore,IL-6 significantly influences mood regulation and cognitive dysfunction in patients with epilepsy,highlighting its involvement in neuropsychiatric comorbidities.In summary,IL-6 is not only a pivotal factor in the pathogenesis of epilepsy but also significantly contributes to the emergence of epilepsy-related neuropsychiatric complications.Future resear-ch should prioritize elucidating the specific mechanisms by which IL-6 operates across different subtypes,stages and neuropsychiatric comorbidities of epilepsy,with the aim of developing more precise and effective interventions.Furthermore,the potential of IL-6 as a biomarker for the early diagnosis and prognosis of epile-psy warrants further investigation.
基金Supported by Xi’an Science and Technology Plan Project,No.23YXYJ0162Shaanxi Province Traditional Chinese Medicine Research and Innovation Talent Plan Project,No.TZKN-CXRC-16+2 种基金Project of Shaanxi Administration of Traditional Chinese Medicine,No.SZYKJCYC-2025-JC-010Shaanxi Province Key Research and Development Plan Project-Social Development Field,No.S2025-YF-YBSF-0391the Science and Technology Innovation Cultivation Program of Longhua Hospital affiliated to Shanghai University of Chinese Medicine,No.YD202220。
文摘BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.
基金This study was supported by grants from the Natural Science Foundation of China (No. 81641003) and Application of Clinical Features in Capital City by the Beijing Municipal Science and Technology Commission (No. Z131107002213135).
文摘Objective: Allergic airway diseases (AADs) are a group of heterogeneous disease mediated by T-helper type 2 (Th2) immune response and characterized with airway inflammation and remodeling, including allergic asthma, allergic rhinitis, and chronic rhinosinusitis with allergic background. This review aimed to discuss the abnormal epithelial-mesenchymal crosstalk in the pathogenesis of AADs. Data Sources: Articles referred in this review were collected from the database of PubMed published in English up to January 2018. Study Selection: We had done a literature search using the following terms "allergic airway disease OR asthma OR allergic rhinitis OR chronic sinusitis AND IL-25 OR IL-33 OR thymic stromal lymphopoietin OR fibrocyte". Related original or review articles were included and carefully analyzed. Results: It is now believed that abnormal epithelial-mesenchymal crosstalk underlies the pathogenesis of AADs. However, the key regulatory factors and molecular events involved in this process still remain unclear. Epithelium-derived triple cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), are shown to act on various target cells and promote the Th2 immune response. Circulating fibrocyte is an important mesenchymal cell that can mediate tissue remodeling. We previously found that IL-25-circulating fibrocyte axis was significantly upregulated in patients with asthma, which may greatly contribute to asthmatic airway inflammation and remodeling. Conclusions: In view of the redundancy ofcytokines and "united airway" theory, we propose a new concept that IL-25/IL-33/TSLP-fibrocyte axis may play a vital role in the abnormal epithelial-mesenchymal crosstalk in some endotypes of AADs. This novel idea will guide potential new intervention schema for the common treatment of AADs sharing common pathogenesis in the future.