The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect th...The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.展开更多
Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood...Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood pressure(BP),can regulate BKCa activity and then elevate blood pressure.Methods Male Sprague-Dawley rats aged 6 weeks were randomized into high salt diet group(HS)and control group,fed with high salt diet(containing 5% NaCl)and standard rat chow(containing 0.4% NaCl)respectively for 16 weeks.Tail systolic blood pressure(SBP),body weight(BW)and 24-hour urinary output were tested every 4 weeks.Content of urinary Na+ was detected using flame spectrophotometrical method.At the end of 16 weeks,all the rats were killed,the mesenteric arteries were obtained,and single mesenteric smooth muscle cells were isolated at once.The resting membrane potential(Em),the total potassium currents and the currents after perfusion with TEA solution of the cells were all recorded by whole cell patch clamp.The transcriptions of BKCa channel α and β1 subunits in mesenteric arterial vascular smooth muscle cells(VSMC)of each group were calculated by real-time RT-PCR.Results There was no difference in SBP and BW at each stage between control group and HS group;the urinary Na+ level in HS animals was elevated significantly after 4 weeks.The negative values of Em in HS group VSMCs were reduced compared with those in the control group.Transcriptions of β1 subunit of BKCa channels were decreased in HS group,but α subunit transcriptions did not differ between the two groups.Whole cell potassium currents did not differ between HS and control groups,but BKCa currents of HS group VSMCs were lower than those of control group ones.Conclusion Even without elevating SBP,salt-loading can still modulate the expression and activity of BKCa channel in the mesenteric arterial VSMC and elevate vascular tone.展开更多
In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activ...In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells. Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies. After contraction with 1 × 10^-5 mol I^-1 norepinephrine, GBE (0.01-1 mg ml^-1) and mirodenafil (0.01-100 nmol I^-1) were added together into the organ bath. In electrophysiological studies, whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum. The corpus cavemosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%±8.35% at 0.01 mg ml^-1 to 52.28%±11.42% at 1 mg ml^-1). After pre-treatment with 0.03 mg ml^-1 of GBE, the relaxant effects of mirodenafil were increased at all concentrations, After tetraethylammonium (TEA) (1 mmol I^-1) administration, the increased effects were inhibited (P〈0.01). Extracellular administration of GBE increased the whole-cell K^+ outward currents in a dose-dependent fashion. The increase of the outward current was inhibited by I mmol 1-1 TEA. These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose. The K+ flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation.展开更多
Direct observation was made by using the patch-clamp technique with a specially designed microperfusion system to investigate the effect of acetylcholine (Ach 10^(-6) mol/L) elicited endothelium-derived relaxing facto...Direct observation was made by using the patch-clamp technique with a specially designed microperfusion system to investigate the effect of acetylcholine (Ach 10^(-6) mol/L) elicited endothelium-derived relaxing factor (EDRF) on the calcium-activated potassium channel (IK(Ca))in the smooth muscle cells of mesenteric resistance vessels in Wistar rats. Activation of IK(Ca) was firstly observed by inducing the elicited EDRF or sodium nitroprusside (SNP 10^(-8) mol/L) under various clamping voltages in cell-attached configuration. While the pipette solution contained KCl 126 mmol/L and the bath solution contained KCl 5.9 mmol/L, two types of conductances of calcium-activated potassium current being 76.4±2.3 pS(mean±S.E. n = 7) and 160.3±7.5 pS (mean±S.E. n= 7) were recorded during the EDRF activation, one type of conductance being 100.5±2.8 pS (mean±S.E. n = 6) was activated by nitric oxide (NO) which is an effective component from SNP. Differences in kinetic characteristics of these channels between EDRF and NO activation were found, particularly the probability of the channel being open in EDRF activation was obviously greater than that in NO stimulation. It has been shown that the potassium channel mechanisms involved in the EDRF and NO actions might be different.展开更多
基金supported by grants from the National Natural Science Foundation of China (No. 81072001)the Natural Science Foundation of Hubei Province, China (No.2011CDB556)
文摘The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.
文摘Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood pressure(BP),can regulate BKCa activity and then elevate blood pressure.Methods Male Sprague-Dawley rats aged 6 weeks were randomized into high salt diet group(HS)and control group,fed with high salt diet(containing 5% NaCl)and standard rat chow(containing 0.4% NaCl)respectively for 16 weeks.Tail systolic blood pressure(SBP),body weight(BW)and 24-hour urinary output were tested every 4 weeks.Content of urinary Na+ was detected using flame spectrophotometrical method.At the end of 16 weeks,all the rats were killed,the mesenteric arteries were obtained,and single mesenteric smooth muscle cells were isolated at once.The resting membrane potential(Em),the total potassium currents and the currents after perfusion with TEA solution of the cells were all recorded by whole cell patch clamp.The transcriptions of BKCa channel α and β1 subunits in mesenteric arterial vascular smooth muscle cells(VSMC)of each group were calculated by real-time RT-PCR.Results There was no difference in SBP and BW at each stage between control group and HS group;the urinary Na+ level in HS animals was elevated significantly after 4 weeks.The negative values of Em in HS group VSMCs were reduced compared with those in the control group.Transcriptions of β1 subunit of BKCa channels were decreased in HS group,but α subunit transcriptions did not differ between the two groups.Whole cell potassium currents did not differ between HS and control groups,but BKCa currents of HS group VSMCs were lower than those of control group ones.Conclusion Even without elevating SBP,salt-loading can still modulate the expression and activity of BKCa channel in the mesenteric arterial VSMC and elevate vascular tone.
文摘In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells. Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies. After contraction with 1 × 10^-5 mol I^-1 norepinephrine, GBE (0.01-1 mg ml^-1) and mirodenafil (0.01-100 nmol I^-1) were added together into the organ bath. In electrophysiological studies, whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum. The corpus cavemosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%±8.35% at 0.01 mg ml^-1 to 52.28%±11.42% at 1 mg ml^-1). After pre-treatment with 0.03 mg ml^-1 of GBE, the relaxant effects of mirodenafil were increased at all concentrations, After tetraethylammonium (TEA) (1 mmol I^-1) administration, the increased effects were inhibited (P〈0.01). Extracellular administration of GBE increased the whole-cell K^+ outward currents in a dose-dependent fashion. The increase of the outward current was inhibited by I mmol 1-1 TEA. These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose. The K+ flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation.
基金Project supported by the National Natural Science Foundation of China.
文摘Direct observation was made by using the patch-clamp technique with a specially designed microperfusion system to investigate the effect of acetylcholine (Ach 10^(-6) mol/L) elicited endothelium-derived relaxing factor (EDRF) on the calcium-activated potassium channel (IK(Ca))in the smooth muscle cells of mesenteric resistance vessels in Wistar rats. Activation of IK(Ca) was firstly observed by inducing the elicited EDRF or sodium nitroprusside (SNP 10^(-8) mol/L) under various clamping voltages in cell-attached configuration. While the pipette solution contained KCl 126 mmol/L and the bath solution contained KCl 5.9 mmol/L, two types of conductances of calcium-activated potassium current being 76.4±2.3 pS(mean±S.E. n = 7) and 160.3±7.5 pS (mean±S.E. n= 7) were recorded during the EDRF activation, one type of conductance being 100.5±2.8 pS (mean±S.E. n = 6) was activated by nitric oxide (NO) which is an effective component from SNP. Differences in kinetic characteristics of these channels between EDRF and NO activation were found, particularly the probability of the channel being open in EDRF activation was obviously greater than that in NO stimulation. It has been shown that the potassium channel mechanisms involved in the EDRF and NO actions might be different.
基金This work was supported by the National Natural Science Foundation of China (No. 39370270)the Natural Science Foundation of Educational Department of Sichuan Province (No. 2003A058).