期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bone morphogenetic protein-7 induced bone marrow stromal cells differentiate into neuron-like cells
1
作者 Kuanxin Li Yuling Zhang +4 位作者 Weishan Wang Bin He Jianhua Sun Jinbo Dong Chenhui Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1685-1690,共6页
Bone morphogenetic protein-7 is widely accepted as an inducer for bone marrow stem cells differentiating into osteoblasts and chondrocytes. Whether bone marrow stromal cells differentiate into neuron-like cells remain... Bone morphogenetic protein-7 is widely accepted as an inducer for bone marrow stem cells differentiating into osteoblasts and chondrocytes. Whether bone marrow stromal cells differentiate into neuron-like cells remains unclear. The current study examined the presence of positive cells for intermediate filament protein and microtubule associated protein-2 in the cytoplasm of bone marrow stromal cells induced by bone morphogenetic protein-7 under an inverted microscope, while no expression of glial fibrillary acidic protein was found. Reverse transcription PCR electrophoresis also revealed a positive target band for intermediate filament protein and microtubule-associated protein 2 mRNA. These results confirmed that bone morphogenetic protein-7 induces rat bone marrow stromal cells differentiating into neuron-like cells. 展开更多
关键词 bone morphogenetic protein-7 DIFFERENTIATION bone marrow stromal cells neuron-like cells microtubule-associated protein 2 intermediate filament protein glial fibrillary acidic protein neural regeneration
下载PDF
Super-sensitive bifunctional nanoprobe: Self-assembly of peptide-driven nanoparticles demonstrating tumor fluorescence imaging and therapy
2
作者 Han Xiao Rui Zhang +5 位作者 Xiaobo Fan Xinglu Jiang Mingyuan Zou Xuejiao Yan Haiping Hao Guoqiu Wu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第3期1473-1486,共14页
The development of nanomedicine has recently achieved several breakthroughs in the field of cancer treatment;however,biocompatibility and targeted penetration of these nanomaterials remain as limitations,which lead to... The development of nanomedicine has recently achieved several breakthroughs in the field of cancer treatment;however,biocompatibility and targeted penetration of these nanomaterials remain as limitations,which lead to serious side effects and significantly narrow the scope of their application.The self-assembly of intermediate filaments with arginine-glycine-aspartate(RGD)peptide(RGDIFP)was triggered by the hydrophobic cationic molecule 7-amino actinomycin D(7-AAD)to synthesize a bifunctional nanoparticle that could serve as a fluorescent imaging probe to visualize tumor treatment.The designed RGD-IFP peptide possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method.This fluorescent nanoprobe with RGD peptide could be targeted for delivery into tumor cells and released in acidic environments such as endosomes/lysosomes,ultimately inducing cytotoxicity by arresting tumor cell cycling with inserted DNA.It is noteworthy that the RGD-IFP/7-AAD nanoprobe tail-vein injection approach demonstrated not only high tumor-targeted imaging potential,but also potent antitumor therapeutic effects in vivo.The proposed strategy may be used in peptide-driven bifunctional nanoparticles for precise imaging and cancer therapy. 展开更多
关键词 NANOPROBE 7-Amino actinomycin D intermediate filament protein Tumor image Antitumor therapy Integrin avβ3
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部