A high molecular weight (M_w=1.85×10~7) polystyrene (PS) with narrow distribution was prepared by high vacuum anionic polymerization in tetrahydrofuran.By use of dynamic light scattering,the dynamics of PS chains...A high molecular weight (M_w=1.85×10~7) polystyrene (PS) with narrow distribution was prepared by high vacuum anionic polymerization in tetrahydrofuran.By use of dynamic light scattering,the dynamics of PS chains in cyclohexane was studied around theθtemperature.For the first time,we have observed the internal motion of polymer chains in solutions below theθtemperature by using dynamic light scattering at smaller angles (even qR_g<1).展开更多
An analytical study of the two degrees of freedom nonlinear dynamical system is presented. The internal motion of the system is separated and described by one fourth order differential equation. An approximate approac...An analytical study of the two degrees of freedom nonlinear dynamical system is presented. The internal motion of the system is separated and described by one fourth order differential equation. An approximate approach allows reducing the problem to the Duffing equation with adequate initial conditions. A novel idea for an effective study of nonlinear dynamical systems consisting in a concept of the socalled limiting phase trajectories is applied. Both qualitative and quantitative complex analyses have been performed. Important nonlinear dynamical transition type phenomena are detected are investigated analytically.展开更多
This work reports the structural feature and internal motion of one novel hyperbranching cluster system in dilution solution.The cluster system is composed of HB-PS_(300)-g-Pt BA_(45) hypergraft copolymer chains with ...This work reports the structural feature and internal motion of one novel hyperbranching cluster system in dilution solution.The cluster system is composed of HB-PS_(300)-g-Pt BA_(45) hypergraft copolymer chains with uniform subchain,high molar mass and low polydispersity(M_(w)=1.73×106 g/mol and<M_(w)/M_(n)>≈1.07),where HB-PS and Pt BA represent hyperbranched polystyrene core and poly(tert-butyl polyacrylate)graft,respectively.In the selective solvent of PS blocks(cyclohexane,T_(θ)=34.5℃),the aggregation kinetics and structural feature are found to be precisely tunable for assembled clusters by the aggregation temperature(11℃<T<17℃)and time(0 h<t<24 h).An interesting structural evolution kinetics is observed,namely,the fractal dimension(d_(f))of clusters is found to first increases and then decreases with t,eventually,it reaches a plateau value of d_(f)≈3.0,corresponds to a uniform spherical structure.By using dynamic light scattering(DLS)to monitor the number and strength of relaxation modes inΓ(q)withΓbeing the decay rate and q being the scattering vector,it is quantitatively revealed that the relaxation,intensity contribution and mode origin of internal motions of clusters are neither similar with previously reported cluster systems with high polydispersity,nor with the classical linear chain systems.In particular,in the broad range of 2.0<qR_(h)<6.0,we have observed that the reduced first cumulant[Γ^(*)=Γ(q)/(q^(3)k_(B)T/η_(0))]does not display an asymptotic behavior.Whereas,a better asymptotic behavior is observed by plottingΓ(q)/q^(4) versus qRh.For the first time,our observation provides direct evidence supporting that,for hyperbranching cluster system with low polydispersity and high local chain segment density,the hydrodynamic interaction is greatly weakened due to the enhanced hydrodynamic shielding effect.展开更多
Under the Born-Oppenheimer approximation, the exact solution of the Schrodinger equation for a two-dimensional hydrogen molecular ion is obtained through separation of variables. The inter-quantum numbers and the mode...Under the Born-Oppenheimer approximation, the exact solution of the Schrodinger equation for a two-dimensional hydrogen molecular ion is obtained through separation of variables. The inter-quantum numbers and the modes of internal motion are determined by analysing the nodal structure of the wavefunction. The eigenstates are classified and the classical periodic orbits corresponding to the modes of internal motion are found.展开更多
基金supported by the Chinese Academy of Sciences (CAS) Special Grant (KJCX2-SW-Hi4)the National Natural Science Foundation of China (NNSFC) Projects (Nos.20534020 and 20574065)the Hong Kong Special Administration Region (HKSAR) Earmarked Project (CUHK4025/04P,2160242).
文摘A high molecular weight (M_w=1.85×10~7) polystyrene (PS) with narrow distribution was prepared by high vacuum anionic polymerization in tetrahydrofuran.By use of dynamic light scattering,the dynamics of PS chains in cyclohexane was studied around theθtemperature.For the first time,we have observed the internal motion of polymer chains in solutions below theθtemperature by using dynamic light scattering at smaller angles (even qR_g<1).
文摘An analytical study of the two degrees of freedom nonlinear dynamical system is presented. The internal motion of the system is separated and described by one fourth order differential equation. An approximate approach allows reducing the problem to the Duffing equation with adequate initial conditions. A novel idea for an effective study of nonlinear dynamical systems consisting in a concept of the socalled limiting phase trajectories is applied. Both qualitative and quantitative complex analyses have been performed. Important nonlinear dynamical transition type phenomena are detected are investigated analytically.
基金financially supported by the National Natural Science Foundation of China(No.21973088)Shenzhen Science and Technology Program(Nos.RCYX20210706092101012 and ZDSYS20210623100800001)。
文摘This work reports the structural feature and internal motion of one novel hyperbranching cluster system in dilution solution.The cluster system is composed of HB-PS_(300)-g-Pt BA_(45) hypergraft copolymer chains with uniform subchain,high molar mass and low polydispersity(M_(w)=1.73×106 g/mol and<M_(w)/M_(n)>≈1.07),where HB-PS and Pt BA represent hyperbranched polystyrene core and poly(tert-butyl polyacrylate)graft,respectively.In the selective solvent of PS blocks(cyclohexane,T_(θ)=34.5℃),the aggregation kinetics and structural feature are found to be precisely tunable for assembled clusters by the aggregation temperature(11℃<T<17℃)and time(0 h<t<24 h).An interesting structural evolution kinetics is observed,namely,the fractal dimension(d_(f))of clusters is found to first increases and then decreases with t,eventually,it reaches a plateau value of d_(f)≈3.0,corresponds to a uniform spherical structure.By using dynamic light scattering(DLS)to monitor the number and strength of relaxation modes inΓ(q)withΓbeing the decay rate and q being the scattering vector,it is quantitatively revealed that the relaxation,intensity contribution and mode origin of internal motions of clusters are neither similar with previously reported cluster systems with high polydispersity,nor with the classical linear chain systems.In particular,in the broad range of 2.0<qR_(h)<6.0,we have observed that the reduced first cumulant[Γ^(*)=Γ(q)/(q^(3)k_(B)T/η_(0))]does not display an asymptotic behavior.Whereas,a better asymptotic behavior is observed by plottingΓ(q)/q^(4) versus qRh.For the first time,our observation provides direct evidence supporting that,for hyperbranching cluster system with low polydispersity and high local chain segment density,the hydrodynamic interaction is greatly weakened due to the enhanced hydrodynamic shielding effect.
基金Project supported by the National Natural Science Foundation of Chinathe NSF of the United States.
文摘Under the Born-Oppenheimer approximation, the exact solution of the Schrodinger equation for a two-dimensional hydrogen molecular ion is obtained through separation of variables. The inter-quantum numbers and the modes of internal motion are determined by analysing the nodal structure of the wavefunction. The eigenstates are classified and the classical periodic orbits corresponding to the modes of internal motion are found.