There is a large demand for models able to predict the future capacity retention and internal resistance(IR)of Lithium-ion battery cells with as little testing as possible.We provide a data-centric model accurately pr...There is a large demand for models able to predict the future capacity retention and internal resistance(IR)of Lithium-ion battery cells with as little testing as possible.We provide a data-centric model accurately predicting a cell’s entire capacity and IR trajectory from one single cycle of input data.This represents a significant reduction in the amount of input data needed over previous works.Our approach characterises the capacity and IR curve through a small number of key points,which,once predicted and interpolated,describe the full curve.With this approach the remaining useful life is predicted with an 8.6%mean absolute percentage error when the input-cycle is within the first 100 cycles.展开更多
large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion proces...large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 k N. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×10~3 cycle when the maximum applied load decreases to 120 k N. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.展开更多
As an important high-energy chemical power source, lithium-ion power batteries come up to application problems of thermal performance, such as extended temperature range and high power charge & discharge. LiFeP04 bat...As an important high-energy chemical power source, lithium-ion power batteries come up to application problems of thermal performance, such as extended temperature range and high power charge & discharge. LiFeP04 battery is applied and developed well recently, its charge and discharge experiment at different temperatures and hybrid pulse power characterization (HPPC) test are analyzed, and the optimal temperature range of LiFeP04 battery is put forward. In order to provide experimental suggestion of power battery application and its thermal management, internal resistance, influencing factor of electromotive force and entropy change state of charge (SOC), battery thermal characteristic of different charge & discharge rates are summarized.展开更多
Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was stu...Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthslpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%- 60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.展开更多
Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{...Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{equilibrium\} potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs.the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E_0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.展开更多
The borehole and total internal thermal resistance are both significant parameters in evaluating the thermal performance of the ground source heat pump.This study aimed to obtain the accurate correlation of the 3D bor...The borehole and total internal thermal resistance are both significant parameters in evaluating the thermal performance of the ground source heat pump.This study aimed to obtain the accurate correlation of the 3D borehole and total internal thermal resistance(R_(b,3D)and R_(a,3D))and analyze the impacts of parameters on the R_(b,3D)and R_(a,3D).Firstly,eight parameters affecting the R_(b,3D)and R_(a,3D),including the borehole diameter,pipe diameter,pipe-pipe distance,borehole depth,soil thermal conductivity,grout thermal conductivity,pipe thermal conductivity,and fluid velocity inside the pipe,were considered and an L-54 design matrix was generated.Then,the 3D numerical model,coupling with the four-resistance model,was proposed to calculate R_(b,3D)and R_(a,3D)for each case.After that,the response surface methodology was employed to obtain and verify the correlation of R_(b,3D)and R_(a,3D),which were compared with the existing resistance calculation methods.Lastly,analysis of variance was carried out to reveal parameters that have statistically significant impacts on the R_(b,3D)and R_(a,3D).Results show that the rationality and accuracy of the correlation of R_(b,3D)and R_(a,3D)can be verified by the determination coefficient and P value of regression model,as well as the P value of lack-of-fit.The existing resistance calculation methods are more or less inaccurate and the discrepancies in some cases can be up to 86.74%and 111.35%for the borehole and total internal thermal resistance.The pipe and grout thermal conductivity,pipe and borehole diameter,and the pipe-pipe distance can be seen as the significant contributory factors to the variation of R_(b,3D)and R_(a,3D).展开更多
Aims With a close association with plant water availability,foliar δ^(13)C had been investigated extensively in alpine regions;however,foliar δ^(15)N has rarely been concurrently used as an indicator of plant nitrog...Aims With a close association with plant water availability,foliar δ^(13)C had been investigated extensively in alpine regions;however,foliar δ^(15)N has rarely been concurrently used as an indicator of plant nitrogen availability.Due to the positive correlations between leaf nitrogen con-tent and foliar δ^(13)C andδ15N found in previous studies,we expected that they should show consistent patterns along an altitudinal gradient.Methods To test our hypothesis,we measured foliar δ^(13)C andδ15N in conjunc-tion with multiple key leaf functional traits of Quercus aquifolioides,a dominant species of alpine forest on the eastern slopes of the sygera mountains,southeastern Tibetan Plateau from 2500 to 3800 m.Important findings(i)Contrary to our hypothesis,foliar δ^(13)C exhibited a significant pos-itive linear relationship with altitude;in contrast,foliarδ15N initially increased and subsequently decreased with altitude,the change in trend occurring around 3300 m.(ii)our analyses indicated that leaf internal resistance and stomatal conductance,rather than photosynthetic capacity indicated by leaf N concentration,appar-ently explained the altitudinal variation in foliar δ^(13)C,while differ-ences in foliar δ^(15)N were likely the result of soil N availability.(iii)Principal component analysis revealed a clear association between δ^(13)C and a tradeoff between water loss and carbon gain,indicated by traits related to gas exchange such as leaf thickness,density,sto-matal properties.In contrast,the second axis was associated withδ15N and nitrogen acquisition strategy in Q.aquifolioides across its altitudinal distribution,represented by traits related to nitrogen concentration and stomata per gram of leaf nitrogen.展开更多
This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radia...This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radial and spiral heat transfer, as well as internal thermal contact resistance (TCR) considered simultaneously and studies the influence of winding layers and winding tension on the ETC. Results show that the analytical data are in good agreement with the numerical results. With the winding layers decreased and the winding tension enhanced, the ETC of Li-ion battery increases gradually. The radial temperature in Li-ion battery is also investigated which demonstrates a relatively higher temperature when considering the internal TCR.展开更多
基金This project was funded by an industry-academia collaborative grant EPSRC EP/R511687/1 awarded by EPSRC&University of Edin-burgh program Impact Acceleration Account(IAA).G.dos Reis acknowledges support from the Fundaç̃ao para a Cî𝑒ncia e a Tecnologia(Portuguese Foundation for Science and Technology,Por-tugal)through the project UIDB/00297/2020(Centro de Matemática e Aplicaç̃oes CMA/FCT/UNL).
文摘There is a large demand for models able to predict the future capacity retention and internal resistance(IR)of Lithium-ion battery cells with as little testing as possible.We provide a data-centric model accurately predicting a cell’s entire capacity and IR trajectory from one single cycle of input data.This represents a significant reduction in the amount of input data needed over previous works.Our approach characterises the capacity and IR curve through a small number of key points,which,once predicted and interpolated,describe the full curve.With this approach the remaining useful life is predicted with an 8.6%mean absolute percentage error when the input-cycle is within the first 100 cycles.
基金Supported by National Natural Science Foundation of China(Grant No.51372216)Jiangsu Science and Technology Plan Project of China(Grant No.BE2015113)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.BKJB460016)
文摘large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 k N. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×10~3 cycle when the maximum applied load decreases to 120 k N. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA11A192)
文摘As an important high-energy chemical power source, lithium-ion power batteries come up to application problems of thermal performance, such as extended temperature range and high power charge & discharge. LiFeP04 battery is applied and developed well recently, its charge and discharge experiment at different temperatures and hybrid pulse power characterization (HPPC) test are analyzed, and the optimal temperature range of LiFeP04 battery is put forward. In order to provide experimental suggestion of power battery application and its thermal management, internal resistance, influencing factor of electromotive force and entropy change state of charge (SOC), battery thermal characteristic of different charge & discharge rates are summarized.
基金Project(2001AA501433) supported by the National High Technology Research and Development Programof China
文摘Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthslpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%- 60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.
基金Supported by EPSRC Funds(No.GR/ R5 0 4 17) and an EPSRC/ HEFCF J.I.F Award(No.JIF4 NESCEQ )
文摘Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{equilibrium\} potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs.the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E_0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.
基金This work was supported by the National Natural Science Foundation of China(No.51708551).
文摘The borehole and total internal thermal resistance are both significant parameters in evaluating the thermal performance of the ground source heat pump.This study aimed to obtain the accurate correlation of the 3D borehole and total internal thermal resistance(R_(b,3D)and R_(a,3D))and analyze the impacts of parameters on the R_(b,3D)and R_(a,3D).Firstly,eight parameters affecting the R_(b,3D)and R_(a,3D),including the borehole diameter,pipe diameter,pipe-pipe distance,borehole depth,soil thermal conductivity,grout thermal conductivity,pipe thermal conductivity,and fluid velocity inside the pipe,were considered and an L-54 design matrix was generated.Then,the 3D numerical model,coupling with the four-resistance model,was proposed to calculate R_(b,3D)and R_(a,3D)for each case.After that,the response surface methodology was employed to obtain and verify the correlation of R_(b,3D)and R_(a,3D),which were compared with the existing resistance calculation methods.Lastly,analysis of variance was carried out to reveal parameters that have statistically significant impacts on the R_(b,3D)and R_(a,3D).Results show that the rationality and accuracy of the correlation of R_(b,3D)and R_(a,3D)can be verified by the determination coefficient and P value of regression model,as well as the P value of lack-of-fit.The existing resistance calculation methods are more or less inaccurate and the discrepancies in some cases can be up to 86.74%and 111.35%for the borehole and total internal thermal resistance.The pipe and grout thermal conductivity,pipe and borehole diameter,and the pipe-pipe distance can be seen as the significant contributory factors to the variation of R_(b,3D)and R_(a,3D).
基金This research was supported by the Program for New Century Excellent Talents in University(NCET-08-0257)the National Natural Science Foundation of China(30972337,30930072 and 31170571)Fundamental Research Funds for the Central Universities(lzujbky-2010-47 and lzujbky-2012-k20)。
文摘Aims With a close association with plant water availability,foliar δ^(13)C had been investigated extensively in alpine regions;however,foliar δ^(15)N has rarely been concurrently used as an indicator of plant nitrogen availability.Due to the positive correlations between leaf nitrogen con-tent and foliar δ^(13)C andδ15N found in previous studies,we expected that they should show consistent patterns along an altitudinal gradient.Methods To test our hypothesis,we measured foliar δ^(13)C andδ15N in conjunc-tion with multiple key leaf functional traits of Quercus aquifolioides,a dominant species of alpine forest on the eastern slopes of the sygera mountains,southeastern Tibetan Plateau from 2500 to 3800 m.Important findings(i)Contrary to our hypothesis,foliar δ^(13)C exhibited a significant pos-itive linear relationship with altitude;in contrast,foliarδ15N initially increased and subsequently decreased with altitude,the change in trend occurring around 3300 m.(ii)our analyses indicated that leaf internal resistance and stomatal conductance,rather than photosynthetic capacity indicated by leaf N concentration,appar-ently explained the altitudinal variation in foliar δ^(13)C,while differ-ences in foliar δ^(15)N were likely the result of soil N availability.(iii)Principal component analysis revealed a clear association between δ^(13)C and a tradeoff between water loss and carbon gain,indicated by traits related to gas exchange such as leaf thickness,density,sto-matal properties.In contrast,the second axis was associated withδ15N and nitrogen acquisition strategy in Q.aquifolioides across its altitudinal distribution,represented by traits related to nitrogen concentration and stomata per gram of leaf nitrogen.
基金supported by National Key Basic Research Program of China (No: 2014CB239603)National Natural Science Foundation of China (Grants No 51506085)Natural Science Foundation of Jiangsu Province (Grants No BK20150742)
文摘This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radial and spiral heat transfer, as well as internal thermal contact resistance (TCR) considered simultaneously and studies the influence of winding layers and winding tension on the ETC. Results show that the analytical data are in good agreement with the numerical results. With the winding layers decreased and the winding tension enhanced, the ETC of Li-ion battery increases gradually. The radial temperature in Li-ion battery is also investigated which demonstrates a relatively higher temperature when considering the internal TCR.