User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore ...User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore the rich image resources generated by users,and the existing attempts touch on the multimodal domain,but still face the challenge of semantic differences between text and images.Given this,we investigate the UIL task across different social media platforms based on multimodal user-generated contents(UGCs).We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation(EUIL)approach.The method first generates captions for user-posted images with the BLIP model,alleviating the problem of missing textual information.Subsequently,we extract aligned text and image features with the CLIP model,which closely aligns the two modalities and significantly reduces the semantic gap.Accordingly,we construct a set of adapter modules to integrate the multimodal features.Furthermore,we design a temporal weight assignment mechanism to incorporate the temporal dimension of user behavior.We evaluate the proposed scheme on the real-world social dataset TWIN,and the results show that our method reaches 86.39%accuracy,which demonstrates the excellence in handling multimodal data,and provides strong algorithmic support for UIL.展开更多
The distinctive form of language emerged from the Internet is gaining more and more attention these days. In fact, different theories and methodologies can support to explain the phenomenon of the Internet language. F...The distinctive form of language emerged from the Internet is gaining more and more attention these days. In fact, different theories and methodologies can support to explain the phenomenon of the Internet language. Furthermore, language and identity in sociolinguistic domain can help study the relationship between the Internet language and its users. Taking a popular online discussion board Tianya.cn as an example, the affirmation of a virtual community's identity can be established through using its distinctive language.展开更多
Internet of Medical Things(IoMT)enabled e-healthcare has the potential to greately improve conventional healthcare services significantly.However,security and privacy become major issues of IoMT because of the restric...Internet of Medical Things(IoMT)enabled e-healthcare has the potential to greately improve conventional healthcare services significantly.However,security and privacy become major issues of IoMT because of the restricted processing abilities,storage,and energy constraints of the sensors.Therefore,it leads to infeasibility of developing traditional cryptographic solutions to the IoMT sensors.In order to ensure security on sensitive medical data,effective encryption and authentication techniques need to be designed to assure security of the patients and healthcare service providers.In this view,this study designs an effective metaheuristic optimization based encryption with user authentication(EMOE-UA)technique for IoMT environment.This work proposes an EMOE-UA technique aims to accomplish mutual authentication for addressing the security issues and reducing the computational complexity.Moreover,the EMOE-UA technique employs optimal multikey homomorphic encryption(OMKHE)technique to encrypt the IoMT data.Furthermore,the improved social spider optimization algorithm(ISSOA)was employed for the optimal multikey generation of the MKHE technique.The experimental result analysis of the EMOE-UA technique takes place using benchmark data and the results are examined under various aspects.The simulation results reported the considerably better performance of the EMOE-UA technique over the existing techniques.展开更多
The fifth generation(5G)system is the forthcoming generation of the mobile communication system.It has numerous additional features and offers an extensively high data rate,more capacity,and low latency.However,these ...The fifth generation(5G)system is the forthcoming generation of the mobile communication system.It has numerous additional features and offers an extensively high data rate,more capacity,and low latency.However,these features and applications have many problems and issues in terms of security,which has become a great challenge in the telecommunication industry.This paper aimed to propose a solution to preserve the user identity privacy in the 5G system that can identify permanent identity by using Variable Mobile Subscriber Identity,which randomly changes and does not use the permanent identity between the user equipment and home network.Through this mechanism,the user identity privacy would be secured and hidden.Moreover,it improves the synchronization between mobile users and home networks.Additionally,its compliance with the Authentication and Key Agreement(AKA)structure was adopted in the previous generations.It can be deployed efficiently in the preceding generations because the current architecture imposes minimal modifications on the network parties without changes in the authentication vector’s message size.Moreover,the addition of any hardware to the AKA carries minor adjustments on the network parties.In this paper,the ProVerif is used to verify the proposed scheme.展开更多
The risks of the current identity system represented by Domain Name System(DNS)and Object Identifier(OID)are studied.According to the characteristics of the industrial Internet Identity(Ⅲ)system,four open ecosystem p...The risks of the current identity system represented by Domain Name System(DNS)and Object Identifier(OID)are studied.According to the characteristics of the industrial Internet Identity(Ⅲ)system,four open ecosystem planes are divided,and a corresponding risk analysis view is established to analyze risks for various planes.This paper uses Isaiah Berlin’s definition of liberty to more generally express the concept of security as positive rights and negative rights.In the risk analysis view,the target system is modeled from four dimensions:stakeholders,framework,architecture,and capability delivery.At last,three defensive lines are proposed to establish the identity credit system.展开更多
Privacy,identity preserving and integrity have become key problems for telecommunication standards.Significant privacy threats are expected in 5G networks considering the large number of devices that will be deployed....Privacy,identity preserving and integrity have become key problems for telecommunication standards.Significant privacy threats are expected in 5G networks considering the large number of devices that will be deployed.As Internet of Things(IoT)and long-term evolution for machine type(LTE-m)are growing very fast with massive data traffic the risk of privacy attacks will be greatly increase.For all the above issues standards’bodies should ensure users’identity and privacy in order to gain the trust of service providers and industries.Against such threats,5G specifications require a rigid and robust privacy procedure.Many research studies have addressed user privacy in 5G networks.This paper proposes a method to enhance user identity privacy in 5G systems through a scheme to protect the international mobile subscriber identity(IMSI)using a mutable mobile subscriber identity(MMSI)that changes randomly and avoids the exchange of IMSIs.It maintains authentication and key agreement(AKA)structure compatibility with previous mobile generations and improves user equipment(UE)synchronization with home networks.The proposed algorithm adds no computation overhead to UE or the network except a small amount in the home subscriber server(HSS).The proposed pseudonym mutable uses the XOR function to send the MMSI from the HSS to the UE which is reducing the encryption overhead significantly.The proposed solution was verified by ProVerif.展开更多
Several excellent works have been done on the industrial Internet;however,some problems are still ahead,such as reliable security,heterogeneous compatibility,and system efficiency.Information-Centric Networking(ICN),a...Several excellent works have been done on the industrial Internet;however,some problems are still ahead,such as reliable security,heterogeneous compatibility,and system efficiency.Information-Centric Networking(ICN),an emerging paradigm for the future Internet,is expected to address the challenges of the industrial Internet to some extent.An integrated architecture for industrial network and identity resolution in the industrial Internet is proposed in this paper.A framework is also designed for the ICN-based industrial Network And Named Data Networking(NDN)based factory extranet with Software-Defined Networking(SDN).Moreover,an identity resolution architecture in the industrial Internet is proposed based on ICN paradigms with separate resolution nodes or with merging resolution and routing.展开更多
As the power Internet of Things(IoT)enters the security construction stage,the massive use of perception layer devices urgently requires an identity authentication scheme that considers both security and practicality....As the power Internet of Things(IoT)enters the security construction stage,the massive use of perception layer devices urgently requires an identity authentication scheme that considers both security and practicality.The existing public key infrastructure(PKI)-based security authentication scheme is currently difficult to apply in many terminals in IoT.Its key distribution and management costs are high,which hinders the development of power IoT security construction.Combined Public Key(CPK)technology uses a small number of seeds to generate unlimited public keys.It is very suitable for identity authentication in the power Internet of Things.In this paper,we propose a novel identity authentication scheme for power IoT.The scheme combines the physical unclonable function(PUF)with improved CPK technology to achieve mutual identity authentication between power IoT terminals and servers.The proposed scheme does not require third-party authentication and improves the security of identity authentication for power IoT.Moreover,the scheme reduces the resource consumption of power IoT devices.The improved CPK algorithm solves the key collision problem,and the third party only needs to save the private key and the public key matrix.Experimental results show that the amount of storage resources occupied in our scheme is small.The proposed scheme is more suitable for the power IoT.展开更多
In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
文摘User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore the rich image resources generated by users,and the existing attempts touch on the multimodal domain,but still face the challenge of semantic differences between text and images.Given this,we investigate the UIL task across different social media platforms based on multimodal user-generated contents(UGCs).We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation(EUIL)approach.The method first generates captions for user-posted images with the BLIP model,alleviating the problem of missing textual information.Subsequently,we extract aligned text and image features with the CLIP model,which closely aligns the two modalities and significantly reduces the semantic gap.Accordingly,we construct a set of adapter modules to integrate the multimodal features.Furthermore,we design a temporal weight assignment mechanism to incorporate the temporal dimension of user behavior.We evaluate the proposed scheme on the real-world social dataset TWIN,and the results show that our method reaches 86.39%accuracy,which demonstrates the excellence in handling multimodal data,and provides strong algorithmic support for UIL.
文摘The distinctive form of language emerged from the Internet is gaining more and more attention these days. In fact, different theories and methodologies can support to explain the phenomenon of the Internet language. Furthermore, language and identity in sociolinguistic domain can help study the relationship between the Internet language and its users. Taking a popular online discussion board Tianya.cn as an example, the affirmation of a virtual community's identity can be established through using its distinctive language.
基金funded by Dirección General de Investigaciones of Universidad Santiago de Cali under call No.01-2021.
文摘Internet of Medical Things(IoMT)enabled e-healthcare has the potential to greately improve conventional healthcare services significantly.However,security and privacy become major issues of IoMT because of the restricted processing abilities,storage,and energy constraints of the sensors.Therefore,it leads to infeasibility of developing traditional cryptographic solutions to the IoMT sensors.In order to ensure security on sensitive medical data,effective encryption and authentication techniques need to be designed to assure security of the patients and healthcare service providers.In this view,this study designs an effective metaheuristic optimization based encryption with user authentication(EMOE-UA)technique for IoMT environment.This work proposes an EMOE-UA technique aims to accomplish mutual authentication for addressing the security issues and reducing the computational complexity.Moreover,the EMOE-UA technique employs optimal multikey homomorphic encryption(OMKHE)technique to encrypt the IoMT data.Furthermore,the improved social spider optimization algorithm(ISSOA)was employed for the optimal multikey generation of the MKHE technique.The experimental result analysis of the EMOE-UA technique takes place using benchmark data and the results are examined under various aspects.The simulation results reported the considerably better performance of the EMOE-UA technique over the existing techniques.
基金The Universiti Kebangsaan Malaysia(UKM)Research Grant Scheme GGPM-2020-028 funded this research.
文摘The fifth generation(5G)system is the forthcoming generation of the mobile communication system.It has numerous additional features and offers an extensively high data rate,more capacity,and low latency.However,these features and applications have many problems and issues in terms of security,which has become a great challenge in the telecommunication industry.This paper aimed to propose a solution to preserve the user identity privacy in the 5G system that can identify permanent identity by using Variable Mobile Subscriber Identity,which randomly changes and does not use the permanent identity between the user equipment and home network.Through this mechanism,the user identity privacy would be secured and hidden.Moreover,it improves the synchronization between mobile users and home networks.Additionally,its compliance with the Authentication and Key Agreement(AKA)structure was adopted in the previous generations.It can be deployed efficiently in the preceding generations because the current architecture imposes minimal modifications on the network parties without changes in the authentication vector’s message size.Moreover,the addition of any hardware to the AKA carries minor adjustments on the network parties.In this paper,the ProVerif is used to verify the proposed scheme.
文摘The risks of the current identity system represented by Domain Name System(DNS)and Object Identifier(OID)are studied.According to the characteristics of the industrial Internet Identity(Ⅲ)system,four open ecosystem planes are divided,and a corresponding risk analysis view is established to analyze risks for various planes.This paper uses Isaiah Berlin’s definition of liberty to more generally express the concept of security as positive rights and negative rights.In the risk analysis view,the target system is modeled from four dimensions:stakeholders,framework,architecture,and capability delivery.At last,three defensive lines are proposed to establish the identity credit system.
基金This Research was supported by Taif University Researchers Supporting Project Number(TURSP-2020/216),Taif University,Taif,Saudi Arabia。
文摘Privacy,identity preserving and integrity have become key problems for telecommunication standards.Significant privacy threats are expected in 5G networks considering the large number of devices that will be deployed.As Internet of Things(IoT)and long-term evolution for machine type(LTE-m)are growing very fast with massive data traffic the risk of privacy attacks will be greatly increase.For all the above issues standards’bodies should ensure users’identity and privacy in order to gain the trust of service providers and industries.Against such threats,5G specifications require a rigid and robust privacy procedure.Many research studies have addressed user privacy in 5G networks.This paper proposes a method to enhance user identity privacy in 5G systems through a scheme to protect the international mobile subscriber identity(IMSI)using a mutable mobile subscriber identity(MMSI)that changes randomly and avoids the exchange of IMSIs.It maintains authentication and key agreement(AKA)structure compatibility with previous mobile generations and improves user equipment(UE)synchronization with home networks.The proposed algorithm adds no computation overhead to UE or the network except a small amount in the home subscriber server(HSS).The proposed pseudonym mutable uses the XOR function to send the MMSI from the HSS to the UE which is reducing the encryption overhead significantly.The proposed solution was verified by ProVerif.
基金supported in part by National Key Research&Development Project(Grant No.2019YFB1804400)the MIIT of China 2019(Innovative Identification and Resolution System for Industrial Internet of Things).
文摘Several excellent works have been done on the industrial Internet;however,some problems are still ahead,such as reliable security,heterogeneous compatibility,and system efficiency.Information-Centric Networking(ICN),an emerging paradigm for the future Internet,is expected to address the challenges of the industrial Internet to some extent.An integrated architecture for industrial network and identity resolution in the industrial Internet is proposed in this paper.A framework is also designed for the ICN-based industrial Network And Named Data Networking(NDN)based factory extranet with Software-Defined Networking(SDN).Moreover,an identity resolution architecture in the industrial Internet is proposed based on ICN paradigms with separate resolution nodes or with merging resolution and routing.
基金the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.under Grant No.J2020068.
文摘As the power Internet of Things(IoT)enters the security construction stage,the massive use of perception layer devices urgently requires an identity authentication scheme that considers both security and practicality.The existing public key infrastructure(PKI)-based security authentication scheme is currently difficult to apply in many terminals in IoT.Its key distribution and management costs are high,which hinders the development of power IoT security construction.Combined Public Key(CPK)technology uses a small number of seeds to generate unlimited public keys.It is very suitable for identity authentication in the power Internet of Things.In this paper,we propose a novel identity authentication scheme for power IoT.The scheme combines the physical unclonable function(PUF)with improved CPK technology to achieve mutual identity authentication between power IoT terminals and servers.The proposed scheme does not require third-party authentication and improves the security of identity authentication for power IoT.Moreover,the scheme reduces the resource consumption of power IoT devices.The improved CPK algorithm solves the key collision problem,and the third party only needs to save the private key and the public key matrix.Experimental results show that the amount of storage resources occupied in our scheme is small.The proposed scheme is more suitable for the power IoT.
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.