Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of...Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency.展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation...For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflect...In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflection event is neither hyperbolic, nor any simple function. If traditional normal move-out (NMO) and stack imaging technology are still used, it is difficult to get a clear stack image. Based on previous techniques on non-hyperbolic stack, it is thought in this paper that no matter how complex the geological condition is, in order to get an optimized stack image, the stack should be non time move-out stack, and any stacking method limited to some kind of curve will be restricted to application conditions. In order to overcome the above-mentioned limit, a new method called optimized non-hyperbolic stack imaging based on interpretation model is presented in this paper. Based on CMP/CRP (Common-Reflection-Point) gather after NMO or pre-stack migration, this method uses the interpretation model of reflectors as constraint, and takes comparability as a distinguishing criterion, and finally forms a residual move-out correction for the gather of constrained model. Numerical simulation indicates that this method could overcome the non hyperbolic problem and get fine stack image.展开更多
Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution rem...Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution remote sensing images is the key to the quick and efficient interpretation of earthquake-triggered landslides.Aiming at addressing this problem,a landslide interpretation model of high-resolution images based on bag of visual word(BoVW)feature was proposed.The high-resolution images were pre-processed,and then BoVW feature and support vector machine(SVM)was adopted to establish an automatic landslide interpretation model.This model was further compared with the currently widely used Histogram of Oriented Gradient(HoG)feature extraction model.In order to test the effectiveness of the method,typical landslide images were selected to construct a landslide sample library,which was subsequently utilized as the foundation for conducting an experimental study.The results show that the accuracy of landslide extraction using this method reaches as high as 89%,indicating that the method can be used for the automatic interpretation of landslides in disaster-prone areas,and has high practical value for regional disaster prevention and damage reduction.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti...With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.展开更多
Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcin...Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected featur...This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified.Initially,the analysis features were extracted using Cuckoo Sandbox,an open-source malware analysis tool,then the features were divided into five categories using the extracted information.The 804 extracted features were reduced by 70%after selecting only the most suitable ones for malware classification using a learning model-based feature selection method called the recursive feature elimination.Next,these important features were analyzed.The level of contribution from each one was assessed by the Random Forest classifier method.The results showed that System call features were mostly allocated.At the end,it was possible to accurately identify the malware type using only 36 to 76 features for each of the four types of malware with the most analysis samples available.These were the Trojan,Adware,Downloader,and Backdoor malware.展开更多
The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distributi...The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distribution in lacustrine shales and its influence on pore structure,and describes the process of porosity development.The principal findings are:(i)Three distribution patterns of OM in lacustrine shales are distinguished;laminated continuous distribution,clumped distribution,and stellate scattered distribution.The differences in total organic carbon(TOC)content,free hydrocarbon content(S_(1)),and OM porosity among these distribution patterns are discussed.(ii)Porosity is negatively correlated with TOC and plagioclase content and positively correlated with quartz,dolomite,and clay mineral content.(iii)Pore evolution in lacustrine shales is characterized by a sequence of decreasing-increasing-decreasing porosity,followed by continuously increasing porosity until a relatively stable condition is reached.(iv)A new model for evaluating porosity in lacustrine shales is proposed.Using this model,the organic and inorganic porosity of shales in the Permian Lucaogou Formation are calculated to be 2.5%-5%and 1%-6.3%,respectively,which correlate closely with measured data.These findings may provide a scientific basis and technical support for the sweet spotting in lacustrine shales in China.展开更多
In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experimen...In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar.展开更多
The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sus...The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.展开更多
Forest resource-exhausted cities have to face with various constraints in the acceleration of its urbanization.This paper analyzed major development constraints of these cities,such as unitary economic structure,weake...Forest resource-exhausted cities have to face with various constraints in the acceleration of its urbanization.This paper analyzed major development constraints of these cities,such as unitary economic structure,weakened forest ecological functions,and geographical barriers,and applied ISM method(Interpretive Structural Modeling) to analyze the correlation among the constraints,and gave suggestions for promoting the development of forest resource-exhausted cities.展开更多
In this paper, in order to implement the share and exchange of the ship product data, a new kind of global function model is established. By researching on the development and trend of the application of ship STEP (st...In this paper, in order to implement the share and exchange of the ship product data, a new kind of global function model is established. By researching on the development and trend of the application of ship STEP (standard for the exchange of product model data) standards, the AIM (application interpreted model) of AP216 is developed and improved as an example, aiming at the characteristics and practical engineering of ship industry in our country. The data exchange interfaces are formed based on STEP in the CAD/CAM for the ship by all function modules and shared databases under the global function model. The share and exchange of all information and data are solved in the design, manufacture and all life-cycle of ship products among different computer application systems. The research work makes foundation for the ship industry informatization.展开更多
This paper is mainly about the calculation of reservoir parameters and theinterpretation method for identifying oil/water beds in Ke82 well areas of Junggar basin. It isdifficult to determine the reservoir parameters ...This paper is mainly about the calculation of reservoir parameters and theinterpretation method for identifying oil/water beds in Ke82 well areas of Junggar basin. It isdifficult to determine the reservoir parameters with common logging methods such as core calibrationlog because of the diversity of minerals and rocks and the complexity of pore structures in theconglomerate reservoir of Junggar basin. Optimization logging exploration is a good method todetermine the porosity by establishing the multi-mineral model with logging curves based on theintegration of geological, core and well testing data. Permeability is identified by BP algorithm ofneural network. Hydrocarbon saturation is determined by correlating Archie's and Simandouxformulas. Comparing the exploratory result and core data, we can see that these methods areeffective for conglomerate logging exploration. We processed and explained six wells in the Ke82well areas. And actual interpretation has had very good results, 85 % of which conform to welltesting data. Therefore, this technique will be effective for identifying conglomerate parameters.展开更多
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
文摘Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency.
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
基金the National Basic Research Program of China (973 Program) ( 2007CB407206)the National Key Technologies Research and Develop-ment Program in the Eleventh Five-Year Plan of China (2006BAC01A11)
文摘For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.
文摘In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflection event is neither hyperbolic, nor any simple function. If traditional normal move-out (NMO) and stack imaging technology are still used, it is difficult to get a clear stack image. Based on previous techniques on non-hyperbolic stack, it is thought in this paper that no matter how complex the geological condition is, in order to get an optimized stack image, the stack should be non time move-out stack, and any stacking method limited to some kind of curve will be restricted to application conditions. In order to overcome the above-mentioned limit, a new method called optimized non-hyperbolic stack imaging based on interpretation model is presented in this paper. Based on CMP/CRP (Common-Reflection-Point) gather after NMO or pre-stack migration, this method uses the interpretation model of reflectors as constraint, and takes comparability as a distinguishing criterion, and finally forms a residual move-out correction for the gather of constrained model. Numerical simulation indicates that this method could overcome the non hyperbolic problem and get fine stack image.
基金the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2022YFS0539)the Geomatics Technology and Application Key Laboratory of Qinghai Province,China(QHDX-2018-07).
文摘Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution remote sensing images is the key to the quick and efficient interpretation of earthquake-triggered landslides.Aiming at addressing this problem,a landslide interpretation model of high-resolution images based on bag of visual word(BoVW)feature was proposed.The high-resolution images were pre-processed,and then BoVW feature and support vector machine(SVM)was adopted to establish an automatic landslide interpretation model.This model was further compared with the currently widely used Histogram of Oriented Gradient(HoG)feature extraction model.In order to test the effectiveness of the method,typical landslide images were selected to construct a landslide sample library,which was subsequently utilized as the foundation for conducting an experimental study.The results show that the accuracy of landslide extraction using this method reaches as high as 89%,indicating that the method can be used for the automatic interpretation of landslides in disaster-prone areas,and has high practical value for regional disaster prevention and damage reduction.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
基金supported by National Natural Science Fundation of China under Grant 61972208National Natural Science Fundation(General Program)of China under Grant 61972211+2 种基金National Key Research and Development Project of China under Grant 2020YFB1804700Future Network Innovation Research and Application Projects under Grant No.2021FNA020062021 Jiangsu Postgraduate Research Innovation Plan under Grant No.KYCX210794.
文摘With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.
文摘Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
基金supported by the Research Program through the National Research Foundation of Korea,NRF-2018R1D1A1B07050864.
文摘This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified.Initially,the analysis features were extracted using Cuckoo Sandbox,an open-source malware analysis tool,then the features were divided into five categories using the extracted information.The 804 extracted features were reduced by 70%after selecting only the most suitable ones for malware classification using a learning model-based feature selection method called the recursive feature elimination.Next,these important features were analyzed.The level of contribution from each one was assessed by the Random Forest classifier method.The results showed that System call features were mostly allocated.At the end,it was possible to accurately identify the malware type using only 36 to 76 features for each of the four types of malware with the most analysis samples available.These were the Trojan,Adware,Downloader,and Backdoor malware.
基金sponsored by the National Natural Science Foundation of China(42072187,42090025)CNPC Key Project of Science and Technology(2021DQ0405)。
文摘The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distribution in lacustrine shales and its influence on pore structure,and describes the process of porosity development.The principal findings are:(i)Three distribution patterns of OM in lacustrine shales are distinguished;laminated continuous distribution,clumped distribution,and stellate scattered distribution.The differences in total organic carbon(TOC)content,free hydrocarbon content(S_(1)),and OM porosity among these distribution patterns are discussed.(ii)Porosity is negatively correlated with TOC and plagioclase content and positively correlated with quartz,dolomite,and clay mineral content.(iii)Pore evolution in lacustrine shales is characterized by a sequence of decreasing-increasing-decreasing porosity,followed by continuously increasing porosity until a relatively stable condition is reached.(iv)A new model for evaluating porosity in lacustrine shales is proposed.Using this model,the organic and inorganic porosity of shales in the Permian Lucaogou Formation are calculated to be 2.5%-5%and 1%-6.3%,respectively,which correlate closely with measured data.These findings may provide a scientific basis and technical support for the sweet spotting in lacustrine shales in China.
文摘In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar.
文摘The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.
基金Sponsored by 2013 Heilongjiang Provincial Philosophy and Social Science Research Program(13D072)Young Talent Cultivation Program of Heilongjiang University of Science and Technology
文摘Forest resource-exhausted cities have to face with various constraints in the acceleration of its urbanization.This paper analyzed major development constraints of these cities,such as unitary economic structure,weakened forest ecological functions,and geographical barriers,and applied ISM method(Interpretive Structural Modeling) to analyze the correlation among the constraints,and gave suggestions for promoting the development of forest resource-exhausted cities.
基金Supported by Commission of the Basic ResearchScience and Technology for National Defence ( No.B192001C001).
文摘In this paper, in order to implement the share and exchange of the ship product data, a new kind of global function model is established. By researching on the development and trend of the application of ship STEP (standard for the exchange of product model data) standards, the AIM (application interpreted model) of AP216 is developed and improved as an example, aiming at the characteristics and practical engineering of ship industry in our country. The data exchange interfaces are formed based on STEP in the CAD/CAM for the ship by all function modules and shared databases under the global function model. The share and exchange of all information and data are solved in the design, manufacture and all life-cycle of ship products among different computer application systems. The research work makes foundation for the ship industry informatization.
文摘This paper is mainly about the calculation of reservoir parameters and theinterpretation method for identifying oil/water beds in Ke82 well areas of Junggar basin. It isdifficult to determine the reservoir parameters with common logging methods such as core calibrationlog because of the diversity of minerals and rocks and the complexity of pore structures in theconglomerate reservoir of Junggar basin. Optimization logging exploration is a good method todetermine the porosity by establishing the multi-mineral model with logging curves based on theintegration of geological, core and well testing data. Permeability is identified by BP algorithm ofneural network. Hydrocarbon saturation is determined by correlating Archie's and Simandouxformulas. Comparing the exploratory result and core data, we can see that these methods areeffective for conglomerate logging exploration. We processed and explained six wells in the Ke82well areas. And actual interpretation has had very good results, 85 % of which conform to welltesting data. Therefore, this technique will be effective for identifying conglomerate parameters.