The precipitation behavior of γ′ phase,under various interrupt cooling tests after 1170℃,solution treatment was examined.The results indicate that the size of secondary γ′ precipitates increases with the decrease...The precipitation behavior of γ′ phase,under various interrupt cooling tests after 1170℃,solution treatment was examined.The results indicate that the size of secondary γ′ precipitates increases with the decrease of interrupt temperature,and the shape changes from spherical to butterfly like.The fine tertiary γ′ can form either during the post cool air quenching at high interrupt-temperatures,or during the specified 5℃ min-1cooling.Air quenching at high temperatures cannot suppress further nucleation of tertiary γ′ phase.展开更多
基金supported by the Science and Technology Project of Beijing (No. D09080300510901)National High Technology Research and Development Pro-gram of China (No. 2012AA03A514)
文摘The precipitation behavior of γ′ phase,under various interrupt cooling tests after 1170℃,solution treatment was examined.The results indicate that the size of secondary γ′ precipitates increases with the decrease of interrupt temperature,and the shape changes from spherical to butterfly like.The fine tertiary γ′ can form either during the post cool air quenching at high interrupt-temperatures,or during the specified 5℃ min-1cooling.Air quenching at high temperatures cannot suppress further nucleation of tertiary γ′ phase.