The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories. Now, only certainty reasoning theories are used to detect and diagnose satellite faults. However, in practice, it is...Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories. Now, only certainty reasoning theories are used to detect and diagnose satellite faults. However, in practice, it is difficult to detect and diagnose some faults of the satellite automatically only by use of certainty reasoning theories. The reason is that detection and diagnosis of these faults require a rational reasoning and a fault tolerant capability. Fortunately, uncertainty reasoning theories can meet these requirements. It is attracting attention of many experts in the space field all over the world that uncertainty reasoning theories are applied to detect and diagnose satellite faults. Uncertainty reasoning theories include several kinds of theories, such as inclusion degree theory, rough set theory, evidence reasoning theory, probabilistic reasoning theory, fuzzy reasoning theory, and so on. Inclusion degree theory, rough set theory and evidence reasoning theory are three advanced ones. Based on these three theories respectively, the author introduces three new methods to detect and diagnose satellite faults in this paper. It is shown that the methods, suitable for detecting and diagnosing satellite faults, especially uncertainty faults, can remedy the defects of the current methods.展开更多
Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent r...Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent recognition techniques.Facing with the challenge,a target intention causal analysis paradigm is proposed by combining with an Intervention Retrieval(IR)model and a Hybrid Intention Recognition(HIR)model.The target data acquired by the sensors are modelled as Basic Probability Assignments(BPAs)based on evidence theory to create uncertain datasets.Then,the HIR model is utilized to recognize intent for a tested sample from uncertain datasets.Finally,the intervention operator under the evidence structure is utilized to perform attribute intervention on the tested sample.Data retrieval is performed in the sample database based on the IR model to generate the intention distribution of the pseudo-intervention samples to analyze the causal effects of individual sample attributes.The simulation results demonstrate that our framework successfully identifies the target intention under the evidence structure and goes further to analyze the causal impact of sample attributes on the target intention.展开更多
Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application ...Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy.展开更多
A numeric reasoning method has been established.With this method,computations oflogical values are only needed instead of step-by-step matching reasoning.Reasoning time ofthis model is at most O(n^2).
With the rapid development of the semantic web and the ever-growing size of uncertain data,representing and reasoning uncertain information has become a great challenge for the semantic web application developers.In t...With the rapid development of the semantic web and the ever-growing size of uncertain data,representing and reasoning uncertain information has become a great challenge for the semantic web application developers.In this paper,we present a novel reasoning framework based on the representation of fuzzy PR-OWL.Firstly,the paper gives an overview of the previous research work on uncertainty knowledge representation and reasoning,incorporates Ontology into the fuzzy Multi Entity Bayesian Networks theory,and introduces fuzzy PR-OWL,an Ontology language based on OWL2.Fuzzy PROWL describes fuzzy semantics and uncertain relations and gives grammatical definition and semantic interpretation.Secondly,the paper explains the integration of the Fuzzy Probability theory and the Belief Propagation algorithm.The influencing factors of fuzzy rules are added to the belief that is propagated between the nodes to create a reasoning framework based on fuzzy PR-OWL.After that,the reasoning process,including the SSFBN structure algorithm,data fuzzification,reasoning of fuzzy rules,and fuzzy belief propagation,is scheduled.Finally,compared with the classical algorithm from the aspect of accuracy and time complexity,our uncertain data representation and reasoning method has higher accuracy without significantly increasing time complexity,which proves the feasibility and validity of our solution to represent and reason uncertain information.展开更多
Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), sin...Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), since human reports are better and easier expressed in natural language than with numbers. In this paper, Herrera-Martfnez's 2-Tuple linguistic representation model is extended for reasoning with uncertain and qualitative information in Dezert-Smarandache Theory (DSmT) framework, in order to overcome the limitations of current approaches, i.e., the lack of precision in the final results of linguistic information fusion according to 1-Tuple representation ( q1 )- The linguistic information which expresses the expert's qualitative beliefs is expressed by means of mixed 2 Tuples (equidistant linguistic labels with a numeric biased value). Together with the 2-Tuple representation model, some basic operators are presented to carry out the fusion operation among qualitative information sources. At last, through simple example how 2-Tuple qualitative DSmT-based (q2 DSmT) fusion rules can be used for qualitative reasoning and fusion under uncertainty, which advantage is also showed by comparing with other methods.展开更多
The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming v...The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.展开更多
A numeric reasoning method is proposed in this paper. It transforms the step--by-step matching reasoning method into computations of logical values. The reasoning time of this model is at most O(n2).
Based on the previous work, some necessary conditions of the two-level Uncertainty Reasoning Model (URM) are proposed and an improvement on the twcalevel Uan is made that can describe and process the deviation. In add...Based on the previous work, some necessary conditions of the two-level Uncertainty Reasoning Model (URM) are proposed and an improvement on the twcalevel Uan is made that can describe and process the deviation. In addition, the paper presents two theorems for specifying the correctness about the improvement. Finally, the application of the twrvlevel URM is discussed.展开更多
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
文摘Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories. Now, only certainty reasoning theories are used to detect and diagnose satellite faults. However, in practice, it is difficult to detect and diagnose some faults of the satellite automatically only by use of certainty reasoning theories. The reason is that detection and diagnosis of these faults require a rational reasoning and a fault tolerant capability. Fortunately, uncertainty reasoning theories can meet these requirements. It is attracting attention of many experts in the space field all over the world that uncertainty reasoning theories are applied to detect and diagnose satellite faults. Uncertainty reasoning theories include several kinds of theories, such as inclusion degree theory, rough set theory, evidence reasoning theory, probabilistic reasoning theory, fuzzy reasoning theory, and so on. Inclusion degree theory, rough set theory and evidence reasoning theory are three advanced ones. Based on these three theories respectively, the author introduces three new methods to detect and diagnose satellite faults in this paper. It is shown that the methods, suitable for detecting and diagnosing satellite faults, especially uncertainty faults, can remedy the defects of the current methods.
基金partially supported by the National Natural Science Foundation of China(No.62173272)。
文摘Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent recognition techniques.Facing with the challenge,a target intention causal analysis paradigm is proposed by combining with an Intervention Retrieval(IR)model and a Hybrid Intention Recognition(HIR)model.The target data acquired by the sensors are modelled as Basic Probability Assignments(BPAs)based on evidence theory to create uncertain datasets.Then,the HIR model is utilized to recognize intent for a tested sample from uncertain datasets.Finally,the intervention operator under the evidence structure is utilized to perform attribute intervention on the tested sample.Data retrieval is performed in the sample database based on the IR model to generate the intention distribution of the pseudo-intervention samples to analyze the causal effects of individual sample attributes.The simulation results demonstrate that our framework successfully identifies the target intention under the evidence structure and goes further to analyze the causal impact of sample attributes on the target intention.
基金Under the auspices of National Natural Science Foundation of China (No.40871188)Knowledge Innovation Programs of Chinese Academy of Sciences (No.INFO-115-C01-SDB4-05)
文摘Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy.
基金the High Technology Research and Development Programme of china
文摘A numeric reasoning method has been established.With this method,computations oflogical values are only needed instead of step-by-step matching reasoning.Reasoning time ofthis model is at most O(n^2).
基金The authors are grateful to the editors and reviewers for their suggestions and comments.This work was supported by National Key Research and Development Project(2018YFC0824400)National Social Science Foundation project(17BXW065)+1 种基金Science and Technology Research project of Henan(1521023110285)Higher Education Teaching Reform Research and Practice Projects of Henan(32180189).
文摘With the rapid development of the semantic web and the ever-growing size of uncertain data,representing and reasoning uncertain information has become a great challenge for the semantic web application developers.In this paper,we present a novel reasoning framework based on the representation of fuzzy PR-OWL.Firstly,the paper gives an overview of the previous research work on uncertainty knowledge representation and reasoning,incorporates Ontology into the fuzzy Multi Entity Bayesian Networks theory,and introduces fuzzy PR-OWL,an Ontology language based on OWL2.Fuzzy PROWL describes fuzzy semantics and uncertain relations and gives grammatical definition and semantic interpretation.Secondly,the paper explains the integration of the Fuzzy Probability theory and the Belief Propagation algorithm.The influencing factors of fuzzy rules are added to the belief that is propagated between the nodes to create a reasoning framework based on fuzzy PR-OWL.After that,the reasoning process,including the SSFBN structure algorithm,data fuzzification,reasoning of fuzzy rules,and fuzzy belief propagation,is scheduled.Finally,compared with the classical algorithm from the aspect of accuracy and time complexity,our uncertain data representation and reasoning method has higher accuracy without significantly increasing time complexity,which proves the feasibility and validity of our solution to represent and reason uncertain information.
基金Supported by the National Natural Science Foundation of China (60804063)863 Program (2006AA040202)
文摘Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), since human reports are better and easier expressed in natural language than with numbers. In this paper, Herrera-Martfnez's 2-Tuple linguistic representation model is extended for reasoning with uncertain and qualitative information in Dezert-Smarandache Theory (DSmT) framework, in order to overcome the limitations of current approaches, i.e., the lack of precision in the final results of linguistic information fusion according to 1-Tuple representation ( q1 )- The linguistic information which expresses the expert's qualitative beliefs is expressed by means of mixed 2 Tuples (equidistant linguistic labels with a numeric biased value). Together with the 2-Tuple representation model, some basic operators are presented to carry out the fusion operation among qualitative information sources. At last, through simple example how 2-Tuple qualitative DSmT-based (q2 DSmT) fusion rules can be used for qualitative reasoning and fusion under uncertainty, which advantage is also showed by comparing with other methods.
文摘The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.
文摘A numeric reasoning method is proposed in this paper. It transforms the step--by-step matching reasoning method into computations of logical values. The reasoning time of this model is at most O(n2).
文摘Based on the previous work, some necessary conditions of the two-level Uncertainty Reasoning Model (URM) are proposed and an improvement on the twcalevel Uan is made that can describe and process the deviation. In addition, the paper presents two theorems for specifying the correctness about the improvement. Finally, the application of the twrvlevel URM is discussed.