Background: To determine responses of neonatal intestine to maternal increased consumption of DL-methionine(DLM) or DL-2-hydroxy-4-methylthiobutanoic acid(HMTBA), eighteen primiparous sows(Landrace × Yorksh...Background: To determine responses of neonatal intestine to maternal increased consumption of DL-methionine(DLM) or DL-2-hydroxy-4-methylthiobutanoic acid(HMTBA), eighteen primiparous sows(Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups(n = 6), with the nutritional treatments introduced from postpartum d0 to d14.Results: The DLM-fed sows showed negative energy balance manifested by lost bodyweight, lower plasma glucose, subdued tricarboxylic acid cycle, and increased plasma lipid metabolites levels. Both villus height and ratio of villus height to crypt depth averaged across the small intestine of piglets were higher in the DLM and HMTBA groups than in the control group. Piglet jejunal oxidized glutathione concentration and ratio of oxidized to reduced glutathione were lower in the HMTBA group than in the DLM and control groups. However, piglet jejunal aminopeptidase A, carnitine transporter 2 and IGF-II precursor m RNA abundances were higher in the DLM group than in the HMTBA and control groups.Conclusion: Increasing maternal consumption of methionine as DLM and HMTBA promoted neonatal intestinal growth by increasing morphological development or up-regulating expression of genes responsible for nutrient metabolism. And increasing maternal consumption of HMTBA promoted neonatal intestinal antioxidant capacity without compromising maternal energy homeostasis during early lactation.展开更多
Objective: This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target. Data Sources: This study was base...Objective: This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target. Data Sources: This study was based on data obtained from PubMed and EMBASE up to Jtme 30, 2015. Articles were selected using the following search terms: "'Intestinal microbiota", "trimethylamine N-oxide (TMAO)", "trimethylamine (TMA)", "cardiovascular", and "atherosclerosis". Study Selection: Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis. Studies on TMA-containing nutrients were also included. Results: A new CVD risk factor, TMAO, was recently identified. It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota, resulting in TMA release. TMA is subsequently converted to TMAO in the liver. Several preliminary studies have linked TMAO to CVD, particularly atherosclerosis; however, the details of this relationship remain unclear. Conclusions: Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management.展开更多
基金financially support from the Rhodimet Research Grant from Adisseo France S.A.S.,Briand,Antony Cedex,Francethe National Natural Science Fundation of China(31472109)+2 种基金Sichuan Province Science Foundation for Fostering Youths Talents(2011JQ0015)Program for Changjiang Scholars and Innovative Research Team in University(IRT13083)All sources of funding were involved in the design of the study and collection,analysis,and interpretation of data and in writing the manuscript
文摘Background: To determine responses of neonatal intestine to maternal increased consumption of DL-methionine(DLM) or DL-2-hydroxy-4-methylthiobutanoic acid(HMTBA), eighteen primiparous sows(Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups(n = 6), with the nutritional treatments introduced from postpartum d0 to d14.Results: The DLM-fed sows showed negative energy balance manifested by lost bodyweight, lower plasma glucose, subdued tricarboxylic acid cycle, and increased plasma lipid metabolites levels. Both villus height and ratio of villus height to crypt depth averaged across the small intestine of piglets were higher in the DLM and HMTBA groups than in the control group. Piglet jejunal oxidized glutathione concentration and ratio of oxidized to reduced glutathione were lower in the HMTBA group than in the DLM and control groups. However, piglet jejunal aminopeptidase A, carnitine transporter 2 and IGF-II precursor m RNA abundances were higher in the DLM group than in the HMTBA and control groups.Conclusion: Increasing maternal consumption of methionine as DLM and HMTBA promoted neonatal intestinal growth by increasing morphological development or up-regulating expression of genes responsible for nutrient metabolism. And increasing maternal consumption of HMTBA promoted neonatal intestinal antioxidant capacity without compromising maternal energy homeostasis during early lactation.
文摘Objective: This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target. Data Sources: This study was based on data obtained from PubMed and EMBASE up to Jtme 30, 2015. Articles were selected using the following search terms: "'Intestinal microbiota", "trimethylamine N-oxide (TMAO)", "trimethylamine (TMA)", "cardiovascular", and "atherosclerosis". Study Selection: Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis. Studies on TMA-containing nutrients were also included. Results: A new CVD risk factor, TMAO, was recently identified. It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota, resulting in TMA release. TMA is subsequently converted to TMAO in the liver. Several preliminary studies have linked TMAO to CVD, particularly atherosclerosis; however, the details of this relationship remain unclear. Conclusions: Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management.