Objective: To quantify the changes in blood glucose, blood lipids, blood pressure, and the intima-media thickness (IMT) of large arteries in patients with new-onset type 2 diabetes mellitus who received either intensi...Objective: To quantify the changes in blood glucose, blood lipids, blood pressure, and the intima-media thickness (IMT) of large arteries in patients with new-onset type 2 diabetes mellitus who received either intensive multifactorial treatment or conventional treatment. Methods: Two-hundred and ten patients with new-onset type 2 diabetes mellitus were randomly assigned to two groups: an intensive treatment group (n=110) and a conventional treatment group (n=100). Fasting blood glucose (FBG), glycosylated hemoglobin A1c (HbA1c), blood pressure, blood lipids [total cholesterol (TC), triglyceride (TG), low-density lipoprotein C (LDL-C), and high-density lipoprotein C (HDL-C)], and IMTs of large arteries (carotid, iliac, and femoral arteries) were determined before and at one and two years after starting treatment. The patients in the conventional treatment group received routine diabetes management in our outpatient department. Targets were established for patients in the intensive treatment group. Their blood glucose, blood lipids, and blood pressure levels were regularly monitored and therapeutic regimens were adjusted for those whose measurements did not meet the target values until all the parameters met the established targets. Within-group and between-group differences were evaluated. Results: A significantly greater percentage of patients in the intensive treatment group had LDL-C levels that reached the target value one year after starting treatment than those in the conventional treatment group (52.04% vs. 33.33%, P<0.05). No significant differences were found be- tween groups for FBG, HbA1c, blood pressure, TG, TC, or HDL-C. The percentages of patients with TG (51.02% vs. 34.48%), TC (52.04% vs. 33.33%), and LDL-C (61.22% vs. 43.67%) who met the respective target values in the in- tensive treatment group were all significantly higher than the corresponding percentages in the conventional treatment group two years after starting treatment (P<0.05). There were no significant differences in the percentages of patients with FBG, HbA1c, and blood pressure values meeting the respective targets between the groups at the two-year follow- up. One year after starting treatment, the LDL-C level, diastolic blood pressure (DBP), and the IMTs of the femoral and iliac arteries of the intensive treatment group were significantly lower compared to those of the conventional treatment group (P<0.05), although there was no significant difference in other metabolic parameters. Two years after starting treatment, the TC, LDL-C, blood pressure [systolic blood pressure (SBP) and DBP], and the IMTs of the carotid and femoral arteries of the intensive treatment group were significantly lower than those of the conventional treatment group (P<0.05). No significant differences in other metabolic parameters existed between the two groups two years after starting treatment. Conclusions: Early comprehensive and intensive treatment of type 2 diabetes mellitus can delay or even reverse the increase in IMT of large arteries. Lowering blood pressure and blood lipid regulation in patients with type 2 diabetes mellitus have great significance in decreasing the risk of diabetes-related macrovascular lesions.展开更多
基金Project(Nos.30700485 and 30771333)supported by the National Natural Science Foundation of Chinathe Zhejiang Provincial Natural Science Foundation of China(No.Y306641)the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period of China(No.2006BAI02B08)
文摘Objective: To quantify the changes in blood glucose, blood lipids, blood pressure, and the intima-media thickness (IMT) of large arteries in patients with new-onset type 2 diabetes mellitus who received either intensive multifactorial treatment or conventional treatment. Methods: Two-hundred and ten patients with new-onset type 2 diabetes mellitus were randomly assigned to two groups: an intensive treatment group (n=110) and a conventional treatment group (n=100). Fasting blood glucose (FBG), glycosylated hemoglobin A1c (HbA1c), blood pressure, blood lipids [total cholesterol (TC), triglyceride (TG), low-density lipoprotein C (LDL-C), and high-density lipoprotein C (HDL-C)], and IMTs of large arteries (carotid, iliac, and femoral arteries) were determined before and at one and two years after starting treatment. The patients in the conventional treatment group received routine diabetes management in our outpatient department. Targets were established for patients in the intensive treatment group. Their blood glucose, blood lipids, and blood pressure levels were regularly monitored and therapeutic regimens were adjusted for those whose measurements did not meet the target values until all the parameters met the established targets. Within-group and between-group differences were evaluated. Results: A significantly greater percentage of patients in the intensive treatment group had LDL-C levels that reached the target value one year after starting treatment than those in the conventional treatment group (52.04% vs. 33.33%, P<0.05). No significant differences were found be- tween groups for FBG, HbA1c, blood pressure, TG, TC, or HDL-C. The percentages of patients with TG (51.02% vs. 34.48%), TC (52.04% vs. 33.33%), and LDL-C (61.22% vs. 43.67%) who met the respective target values in the in- tensive treatment group were all significantly higher than the corresponding percentages in the conventional treatment group two years after starting treatment (P<0.05). There were no significant differences in the percentages of patients with FBG, HbA1c, and blood pressure values meeting the respective targets between the groups at the two-year follow- up. One year after starting treatment, the LDL-C level, diastolic blood pressure (DBP), and the IMTs of the femoral and iliac arteries of the intensive treatment group were significantly lower compared to those of the conventional treatment group (P<0.05), although there was no significant difference in other metabolic parameters. Two years after starting treatment, the TC, LDL-C, blood pressure [systolic blood pressure (SBP) and DBP], and the IMTs of the carotid and femoral arteries of the intensive treatment group were significantly lower than those of the conventional treatment group (P<0.05). No significant differences in other metabolic parameters existed between the two groups two years after starting treatment. Conclusions: Early comprehensive and intensive treatment of type 2 diabetes mellitus can delay or even reverse the increase in IMT of large arteries. Lowering blood pressure and blood lipid regulation in patients with type 2 diabetes mellitus have great significance in decreasing the risk of diabetes-related macrovascular lesions.