The emergence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)variants has decreased the efficacy of SARs-CoV-2 vaccines in containing coronavirus disease 2019(CoVID-19)over time,and booster vaccination ...The emergence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)variants has decreased the efficacy of SARs-CoV-2 vaccines in containing coronavirus disease 2019(CoVID-19)over time,and booster vaccination strategies are urgently necessitated to achieve sufficient protection.Intranasal immunization can improvemucosal immunity,offer-ing protection against the infection and sustaining the spread of SARS-CoV-2.In this study,an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum,nasal lavage fluid,and bronchoal-veolar lavage fluid compared with only two doses of mRNA vaccine.After intranasal boosting with the RBD-HR vaccine,the levels of serum neutralizing antibodies against prototype and variant strains of SARS-Cov-2 pseudoviruses weremarkedly higher than those in mice receiving mRNA vaccine alone,and intranasal boosting with the RBD-HR vaccine also inhibited the bind-ing of RBD to hACE2 receptors.Furthermore,the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+dendritic cells in the respiratory mucosa,and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs,including mediastinal lymph nodes,inguinal lymph nodes,and spleen.Collectively,these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locallyandsystemically.展开更多
The flagellin component FliC of Salmonella typhimurium is capable of activating the innate immune system via specific interactions with TLR5 and can also act as a carrier of foreign antigen to elicit antigen-specific ...The flagellin component FliC of Salmonella typhimurium is capable of activating the innate immune system via specific interactions with TLR5 and can also act as a carrier of foreign antigen to elicit antigen-specific immune responses.Thus,we constructed an attenuated Salmonella strain SL5928(fliC/esat)expressing chimeric flagellin that contained the ESAT-6 antigen coding sequence of Mycobacterium tuberculosis inserted into the highly variable region of the Salmonella flagellin coding gene fliCi.The chimeric flagellin functioned normally,as demonstrated using a flagella swarming assay and electron microscopy.To analyze the effects of chimeric flagellin,the cell-mediated immune response and cytotoxic T lymphocyte(CTL)effects specific for ESAT-6 antigen were tested after intranasal immunization of mice with flagellated Salmonella SL5928(fliC/esat).The results showed that SL5928(fliC/esat)intranasal immunization can strongly elicit an ESAT-6-specific T helper(Th)1-type immune response in mucosal lymphoid tissues,such as nasopharynx-associated lymph nodes,lung and Peyer’s patches,and a Th1/Th2 response was elicited in spleen and mesenteric lymph nodes.Furthermore,intranasal immunization of SL5928(fliC/esat)produced efficient CTL effects,as demonstrated using a 5-and 6-carboxyfluorescein diacetate succinimidyl ester(CFSE)assay.Thus,our study revealed that Salmonella flagellin acts as a carrier for foreign antigen and triggers strong Th1 and CTL responses during intranasal immunization.Chimeric flagellin is potentially an effective strategy for the development of novel vaccines against tuberculosis in humans and animals.展开更多
The rapid mutation and spread of SARS-CoV-2 variants urge the development of effective mucosal vaccines to provide broadspectrum protection against the initial infection and thereby curb the transmission potential.Her...The rapid mutation and spread of SARS-CoV-2 variants urge the development of effective mucosal vaccines to provide broadspectrum protection against the initial infection and thereby curb the transmission potential.Here,we designed a chimeric tripleRBD immunogen,3Ro-NC,harboring one Delta RBD and two Omicron RBDs within a novel protein scaffold.3Ro-NC elicits potent and broad RBD-specific neutralizing immunity against SARS-CoV-2 variants of concern.Notably,intranasal immunization with 3RoNC plus the mucosal adjuvant KFD(3Ro-NC+KFDi.n)elicits coordinated mucosal IgA and higher neutralizing antibody specificity(closer antigenic distance)against the Omicron variant.In Omicron-challenged human ACE2 transgenic mice,3Ro-NC+KFDi.n immunization significantly reduces the tissue pathology in the lung and lowers the viral RNA copy numbers in both the lung(85.7-fold)and the nasal turbinate(13.6-fold).Nasal virologic control is highly correlated with RBD-specific secretory IgA antibodies.Our data show that 3Ro-NC plus KFD is a promising mucosal vaccine candidate for protection against SARS-CoV-2 Omicron infection,pathology and transmission potential.展开更多
基金funded by the National Science Foundation for Excellent Young Scholars of China(No.32122052)the National Natural Science Foundation Regional Innovation and Development of China(No.U19A2003).
文摘The emergence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)variants has decreased the efficacy of SARs-CoV-2 vaccines in containing coronavirus disease 2019(CoVID-19)over time,and booster vaccination strategies are urgently necessitated to achieve sufficient protection.Intranasal immunization can improvemucosal immunity,offer-ing protection against the infection and sustaining the spread of SARS-CoV-2.In this study,an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum,nasal lavage fluid,and bronchoal-veolar lavage fluid compared with only two doses of mRNA vaccine.After intranasal boosting with the RBD-HR vaccine,the levels of serum neutralizing antibodies against prototype and variant strains of SARS-Cov-2 pseudoviruses weremarkedly higher than those in mice receiving mRNA vaccine alone,and intranasal boosting with the RBD-HR vaccine also inhibited the bind-ing of RBD to hACE2 receptors.Furthermore,the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+dendritic cells in the respiratory mucosa,and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs,including mediastinal lymph nodes,inguinal lymph nodes,and spleen.Collectively,these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locallyandsystemically.
基金supported by grants from the Major State Basic Research Development Program of China(973 Program)the National S T Major Project(no.2008 ZX10003-010)+2 种基金the National Department Public Benefit Research Foundation(200903027)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The flagellin component FliC of Salmonella typhimurium is capable of activating the innate immune system via specific interactions with TLR5 and can also act as a carrier of foreign antigen to elicit antigen-specific immune responses.Thus,we constructed an attenuated Salmonella strain SL5928(fliC/esat)expressing chimeric flagellin that contained the ESAT-6 antigen coding sequence of Mycobacterium tuberculosis inserted into the highly variable region of the Salmonella flagellin coding gene fliCi.The chimeric flagellin functioned normally,as demonstrated using a flagella swarming assay and electron microscopy.To analyze the effects of chimeric flagellin,the cell-mediated immune response and cytotoxic T lymphocyte(CTL)effects specific for ESAT-6 antigen were tested after intranasal immunization of mice with flagellated Salmonella SL5928(fliC/esat).The results showed that SL5928(fliC/esat)intranasal immunization can strongly elicit an ESAT-6-specific T helper(Th)1-type immune response in mucosal lymphoid tissues,such as nasopharynx-associated lymph nodes,lung and Peyer’s patches,and a Th1/Th2 response was elicited in spleen and mesenteric lymph nodes.Furthermore,intranasal immunization of SL5928(fliC/esat)produced efficient CTL effects,as demonstrated using a 5-and 6-carboxyfluorescein diacetate succinimidyl ester(CFSE)assay.Thus,our study revealed that Salmonella flagellin acts as a carrier for foreign antigen and triggers strong Th1 and CTL responses during intranasal immunization.Chimeric flagellin is potentially an effective strategy for the development of novel vaccines against tuberculosis in humans and animals.
基金This work was supported in whole or in part by the National Key R&D Program of China(grant number:2021YFC2302602 to JY)the strategic priority research program(grant number XDB29010101)+1 种基金key project(2020YJFK-Z-0149)of the Chinese Academy of Sciences(to Z-LS)This study was also supported by the National Natural Science Foundation of China(31970878 to JY,92169104 and 31970881 to Y-QC),Shenzhen Science and Technology Program (Grant number: RCJC20210706092009004 and JCYJ20190807154603596 to Y-QC).
文摘The rapid mutation and spread of SARS-CoV-2 variants urge the development of effective mucosal vaccines to provide broadspectrum protection against the initial infection and thereby curb the transmission potential.Here,we designed a chimeric tripleRBD immunogen,3Ro-NC,harboring one Delta RBD and two Omicron RBDs within a novel protein scaffold.3Ro-NC elicits potent and broad RBD-specific neutralizing immunity against SARS-CoV-2 variants of concern.Notably,intranasal immunization with 3RoNC plus the mucosal adjuvant KFD(3Ro-NC+KFDi.n)elicits coordinated mucosal IgA and higher neutralizing antibody specificity(closer antigenic distance)against the Omicron variant.In Omicron-challenged human ACE2 transgenic mice,3Ro-NC+KFDi.n immunization significantly reduces the tissue pathology in the lung and lowers the viral RNA copy numbers in both the lung(85.7-fold)and the nasal turbinate(13.6-fold).Nasal virologic control is highly correlated with RBD-specific secretory IgA antibodies.Our data show that 3Ro-NC plus KFD is a promising mucosal vaccine candidate for protection against SARS-CoV-2 Omicron infection,pathology and transmission potential.