期刊文献+
共找到755篇文章
< 1 2 38 >
每页显示 20 50 100
Hilbert spectrum and intrinsic oscillation mode of dynamic response of a bilinear SDOF system: influence of harmonic excitation amplitude 被引量:1
1
作者 张郁山 梁建文 胡聿贤 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期17-26,共10页
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s... Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system. 展开更多
关键词 bilinear SDOF system Hilbert-Huang transform (HHT) Hilbert spectrum Hilbert marginal spectrum Fourier spectrum intrinsic mode function (imf) intra-wave modulation inter-wave combination
下载PDF
基于TVFEMD-IMF能量熵增量的桥梁监测数据降噪方法
2
作者 李双江 辛景舟 +3 位作者 蒋黎明 刘水康 巴建明 周建庭 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期178-185,206,共9页
针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥... 针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥梁监测数据降噪方法。首先,利用TVFEMD分解桥梁原始监测数据,得到多个子序列;其次,采用IMF能量熵增量确定多个子序列中的有效子序列;然后,划分子序列中的结构响应分量和噪声分量,对结构响应分量重组实现监测数据降噪;最后,利用平均绝对误差(mean absolute error,简称MAE)、均方根误差(root mean squared error,简称RMSE)和信噪比(signal-noise ratio,简称SNR)对不同方法的降噪效果进行评价。仿真算例和工程实例结果表明:TVFEMD相比经验模态分解(empirical mode decomposition,简称EMD),有效解决了模态混叠问题;TVFEMD结合IMF能量熵增量方法,有效抑制了多重噪声影响,对结果精度有较大提升;与EMD-IMF能量熵增量和Kalman滤波降噪法相比,TVFEMD-IMF能量熵增量法所得到降噪信号的MAE和RMSE值分别提升了23%和21%以上,降噪效果更好,信噪比提升38%以上,抗噪性能更佳。 展开更多
关键词 桥梁 健康监测 降噪 时变滤波经验模态分解 本征模函数能量熵增量
下载PDF
GIS不同耦合方式下注入脉冲的加权IMF局放信号等效性
3
作者 董冰冰 李康 +3 位作者 高常胜 刘贯科 戴喜良 夏云峰 《电力工程技术》 北大核心 2024年第4期95-103,共9页
注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证... 注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证监测装置功能校验的有效性。文中首先建立126 kV GIS典型局放缺陷(尖端、悬浮、绝缘子气泡)和内/外置式脉冲注入UHF局放检测平台,并对UHF信号有效脉冲进行归一化提取;接着提出基于经验模态分解的加权本征模函数(intrinsic mode functions,IMF)信号处理方法,通过计算局放信号欧式距离平均值和最大值表征其等效性;最后与常规信号偏差法进行对比验证。研究表明,相较于常规信号等效性分析方法,加权IMF法可有效解决UHF信号波形局部差异较大的问题;使用内置传感器脉冲注入的模拟局放信号与悬浮局放信号等效性最高,局放信号的欧式距离平均值M_(e)和最大值M_(a)分别为3.82%和10.28%。因此,UHF监测装置功能校验可采用恒定参数注入脉冲代替悬浮缺陷,且模拟局放可优先选择内置UHF传感器注入脉冲。文中研究可为UHF局放监测装置功能校验的脉冲注入方法提供参考。 展开更多
关键词 注入脉冲 局放模拟 经验模态分解 信号等效性分析 本征模函数(imf) 欧式距离
下载PDF
模态特征分量(IMF)在轴承故障诊断中的选用原则综述
4
作者 杨岗 邓琴 +2 位作者 卫昱乾 徐五一 李芾 《铁道车辆》 2023年第6期7-15,共9页
经验模态分解(Empirical Mode Decomposition,EMD)及其衍生算法近年来在轴承故障领域得到了广泛应用。该类算法可以基于振动信号自身的特点对其进行自适应分解,得到一组蕴含不同频率成分的固有模态函数(Intrinsic Mode Function,IMF)。... 经验模态分解(Empirical Mode Decomposition,EMD)及其衍生算法近年来在轴承故障领域得到了广泛应用。该类算法可以基于振动信号自身的特点对其进行自适应分解,得到一组蕴含不同频率成分的固有模态函数(Intrinsic Mode Function,IMF)。但是该类算法由于自身分解规则的缺陷不可避免地存在端点效应与模态混叠现象,从而产生了一些虚假IMF分量,影响轴承故障诊断的准确性。此外,EMD类算法分解得到的IMF通常是噪声或干扰信号,只有少数分量能够反映轴承故障特征。因此,如何筛选含有丰富故障信息的敏感IMF是该类算法的关键。文章首先介绍了EMD及其衍生算法,然后总结了目前在滚动轴承故障诊断领域中选取敏感IMF的主要准则,并阐述了其优缺点。 展开更多
关键词 轴承 经验模态分解 固有模态函数 故障诊断
下载PDF
融合IMF能量矩和BiLSTMNN的水电机组振动故障诊断 被引量:3
5
作者 邓晓琴 瞿卫华 +4 位作者 陈金保 王云鹤 邹屹东 胡文庆 肖志怀 《水力发电学报》 CSCD 北大核心 2023年第10期86-95,共10页
针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empir... 针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法对正常和故障振动信号样本进行处理,得到频率各异的本征模态函数(intrinsic mode functions,IMF)和剩余分量。然后计算IMF能量矩,并将其作为故障特征。进一步,将故障特征作为输入、故障类别作为输出,训练BiLSTMNN得到水电机组故障识别器。结合故障识别器和实时振动信号IMF能量矩特征,即可识别水电机组运行状态为正常或具体故障类型。最后,结合转子实验台数据和实际电站机组样本数据,设计对比实验,验证了所提方法在挖掘信号特征方面的有效性及较高的故障诊断准确率。 展开更多
关键词 本征模态函数 能量矩 双向长短期记忆神经网络 故障诊断 水电机组振动信号
下载PDF
漏表面波IMF_(1)能量识别无砟轨道脱空适用性研究
6
作者 马嘉霈 袁笙哲 +3 位作者 肖军华 李航 潘越 苏志鹏 《振动.测试与诊断》 EI CSCD 北大核心 2023年第5期850-858,1033,1034,共11页
为了研究漏表面波法对高铁无砟轨道层间脱空检测的适用性,建立脱空特征指标,通过含层间脱空的板式无砟轨道实尺模型进行试验,建立空气‑无砟轨道耦合有限元模型,分析不同工况下的冲击响应声场分布特征;进一步对漏表面波信号进行希尔伯特... 为了研究漏表面波法对高铁无砟轨道层间脱空检测的适用性,建立脱空特征指标,通过含层间脱空的板式无砟轨道实尺模型进行试验,建立空气‑无砟轨道耦合有限元模型,分析不同工况下的冲击响应声场分布特征;进一步对漏表面波信号进行希尔伯特‑黄变换,保留高频特征信号至第1阶本征模函数(intrinsic mode function,简称IMF_(1)),分解低频干扰信号至高阶本征模函数,提出以IMF_(1)能量为特征指标的层间脱空判识方法。研究结果表明:随着脱空长度和脱空至荷载冲击点距离的增大,漏表面波IMF_(1)能量分布呈现正相关变化趋势;IMF_(1)能量对CRTSII型板式无砟轨道板中CA砂浆层脱空0.2~0.5 m较为敏感,基于漏表面波的CA砂浆层脱空检测具备一定理论可行性。 展开更多
关键词 板式无砟轨道 脱空识别 漏表面波 本征函数 第1阶本征模函数能量
下载PDF
Adaptive Variational Mode Decomposition for Bearing Fault Detection
7
作者 Xing Xing Ming Zhang Wilson Wang 《Journal of Signal and Information Processing》 2023年第2期9-24,共16页
Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable beari... Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable bearing fault detection still remains a challenging task, especially in industrial applications. The objective of this work is to propose an adaptive variational mode decomposition (AVMD) technique for non-stationary signal analysis and bearing fault detection. The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis index is suggested to decompose the target signal and select the most representative intrinsic mode functions (IMFs). 3) The envelope spectrum analysis is performed using the selected IMFs to identify the characteristic features for bearing fault detection. The effectiveness of the proposed AVMD technique is examined by experimental tests under different bearing conditions, with the comparison of other related bearing fault techniques. 展开更多
关键词 Bearing Fault Detection Vibration Signal Analysis intrinsic mode functions Variational mode Decomposition
下载PDF
基于数字孪生和深度学习的结构损伤识别 被引量:2
8
作者 唐和生 王泽宇 陈嘉缘 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期110-121,共12页
土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真... 土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真模型和在线监测数据构建结构的数字孪生,以获得不同损伤工况下结构动力响应的“大数据”;为了摆脱对外激励信息的依赖,应用经验模态分解法和传递率函数对得到的数据进行预处理;将预处理后的固有模态传递率函数数据作为深度学习的输入进行训练,实现结构的损伤识别。为验证方法的有效性,对实际结构未经训练的监测数据进行分析,结果表明,该方法泛化能力良好,能够有效识别结构损伤状况。通过数字孪生技术解决了传统方法数据匮乏的问题,不需要任何地震信息,利用固有模态传递率函数数据训练的深度神经网络仍能保持较高的损伤识别准确率,二者结合可以使工程结构健康监测更为主动、可靠、高效。 展开更多
关键词 数字孪生 深度学习 固有模态传递率函数 损伤识别 结构健康监测
下载PDF
混凝土缺陷信号变分模态分解与超声成像方法
9
作者 张奇 韩庆邦 +3 位作者 孙刘家 靳琪琳 王溢秋 刘志鹏 《应用声学》 CSCD 北大核心 2024年第4期829-835,共7页
混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而... 混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而提高成像算法对混凝土缺陷间散射波互干扰的鲁棒性。通过设置对比试验,研究了不同缺陷混凝土结构中该信号处理方式对于成像结果的影响。试验结果表明,该方法对于弱散射及散射干扰具有更好的鲁棒性,相比基于原始数据的成像方法能够更好地还原混凝土内部结构。 展开更多
关键词 混凝土 超声检测 变分模态分解 本征模态函数
下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
10
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子群优化算法 本征模函数
下载PDF
基于EEMD分解的阶次跟踪方法研究
11
作者 魏仕华 蔺梦雄 《机电工程》 CAS 北大核心 2024年第9期1604-1612,共9页
摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行... 摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行了故障诊断。首先,对采集到的时域振动信号和转速信号进行了等角度域差值采样,得到了振动信号的等角域平稳信号;然后,对等角域信号进行了集合经验模态分解,得到了若干个固有模态分量(IMFs),计算了各个固有模态分量的峭度值,选取目标模态分量进行了信号重构;接着,采用快速傅里叶变换得到了故障信号的阶次图;最后,根据减速器的传动方式、各零部件的模数,计算出了各主要部件的故障阶次,对比减速器在故障前后阶次图的能量峰值进行了故障诊断。研究结果表明:该方法能够准确提取包含故障信息的固有模态分量,实现从等时域信号到等角域信号的转换,并提取摆线针轮减速器的滚针故障阶次(8.37阶),故障准确率达到99.6%,可实现摆线针轮减速器在非平稳工况下的故障特征识别,并验证该方法的可行性和有效性。 展开更多
关键词 摆线针轮减速器 集合经验模态分解 阶次跟踪分析 故障诊断 变转速工况 固有模态分量
下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
12
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:3
13
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
下载PDF
基于IMF能量谱的水声信号特征提取与分类 被引量:18
14
作者 刘深 张小蓟 +1 位作者 牛奕龙 汪平平 《计算机工程与应用》 CSCD 2014年第3期203-206,226,共5页
经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通... 经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通过对水声信号进行经验模态分解,提取信号的本征模式分量并转换为能量谱特征向量,从而观测不同信号子频带能量谱的特征变化。分类实验采用支持向量机(SVM)分类器进行。实验结果表明,相对于小波能量谱特征提取法而言,利用IMF能量谱作为特征向量的分类实验具有更佳的分类效果,平均正确率达88%以上。 展开更多
关键词 经验模态分解 本征模函数 本征模函数能量谱 特征提取 支持向量机(SVM)分类器
下载PDF
Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering 被引量:7
15
作者 马彦彦 李国发 +2 位作者 王钧 周辉 张保江 《Applied Geophysics》 SCIE CSCD 2015年第1期47-54,121,共9页
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ... The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation. 展开更多
关键词 Complex empirical mode decomposition complex intrinsic mode functions f–x predictive filtering random noise attenuation
下载PDF
EEMD-小波在高边坡变形信息提取中的应用研究 被引量:1
16
作者 梁永平 李盛 赖国泉 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期993-1000,共8页
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进... 针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。 展开更多
关键词 公共安全 变形 集合经验模态分解(EEMD)-小波 模态分量 模型重构 精度 信息提取
下载PDF
基于IMF能量矩和神经网络的轴承故障诊断 被引量:34
17
作者 秦太龙 杨勇 +1 位作者 程珩 薛松 《振动.测试与诊断》 EI CSCD 2008年第3期229-232,共4页
针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称... 针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称EMD)方法,把振动信号分解为若干个IMF,再将重要的IMF分量作基于时间轴的积分,得到IMF能量矩特征向量,最后借助BP神经网络的分类能力对特征向量进行分类。对滚动轴承的正常状态、外圈故障、滚动体故障和外圈故障信号的分析结果表明,该方法能够准确、有效地识别这些故障。 展开更多
关键词 滚动轴承 本征模函数 能量矩 故障诊断 经验模态分解 BP神经网络
下载PDF
基于IMF能量熵的目标特征提取与分类方法 被引量:13
18
作者 张小蓟 张歆 孙进才 《计算机工程与应用》 CSCD 北大核心 2008年第4期68-69,共2页
提出了一种基于固有模态函数(IMF)能量熵的特征提取与选择方法。对三类信号进行了经验模态分解(EMD),得到IMF。对于不同类别的信号,同阶的IMF能量有明显的不同。选择IMF能量作为特征向量,并选判别熵作为分类判据,同时给出了两种能量熵... 提出了一种基于固有模态函数(IMF)能量熵的特征提取与选择方法。对三类信号进行了经验模态分解(EMD),得到IMF。对于不同类别的信号,同阶的IMF能量有明显的不同。选择IMF能量作为特征向量,并选判别熵作为分类判据,同时给出了两种能量熵的计算公式。采用K-近邻分类器对三类信号进行了分类试验,试验结果表明,基于最佳特征向量选择的分类试验的平均正确识别率达80%以上。 展开更多
关键词 经验模态分解 固有模态函数 特征提取 K-近邻分类
下载PDF
基于EEMD及敏感IMF的再制造发动机振动模式研究 被引量:10
19
作者 陈成法 李树珉 +2 位作者 张建生 张英锋 孙长库 《振动与冲击》 EI CSCD 北大核心 2014年第2期117-121,共5页
为更好提取再制造发动机的振动特征,采用总体平均经验分解模式(Ensemble Empirical Mode Decomposition,EEMD)对信号进行分解,并用于再制造发动机振动模式研究中。在对振动信号分解基础上,利用相关系数计算IMF分量与其原始信号间相关性... 为更好提取再制造发动机的振动特征,采用总体平均经验分解模式(Ensemble Empirical Mode Decomposition,EEMD)对信号进行分解,并用于再制造发动机振动模式研究中。在对振动信号分解基础上,利用相关系数计算IMF分量与其原始信号间相关性及原始信号IMF分量敏感因子;利用敏感IMF进行Hilbert变换。研究结果表明,采用EEMD分解算法所得IMF分量能反映再制造发动机的振动特征,基于敏感IMF的边际谱能区分再制造发动机不同部件的振动模式,并将再制造发动机部件分为缸壁、缸盖、曲轴三种振动模式,对提高发动机再制造水平具有重要意义。 展开更多
关键词 EEMD分解 敏感imf 振动模式 再制造发动机
下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法
20
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部