By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters ...By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.展开更多
A novel La Shalle's invariant set theory (LSIST) based adaptive asymptotic synchronization (LSISAAS) method is proposed to asymptotically synchronize Duffing system with unknown parameters which also are consider...A novel La Shalle's invariant set theory (LSIST) based adaptive asymptotic synchronization (LSISAAS) method is proposed to asymptotically synchronize Duffing system with unknown parameters which also are considered as system states. The LSISASS strategy depends on the only information, i.e. one state of the master system. According to the LSIST, the LSISASS method can asymptotically synchronize fully the states of the master system and the unknown system parameters as well. Simulation results also validate that the LSISAAS approach can obtain asymptotic synchronization.展开更多
This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and ...This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and intersect the switching manifold at two points and the switching manifold is composed of two perpendicular planes.展开更多
This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the F...This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.展开更多
A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invari...A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].展开更多
This paper considers the problem of disturbance tolerance/rejection of a switched system resulting from a family of linear systems subject to actuator saturation and E-infinity disturbances. For a given set of linear ...This paper considers the problem of disturbance tolerance/rejection of a switched system resulting from a family of linear systems subject to actuator saturation and E-infinity disturbances. For a given set of linear feedback gains, a given switching scheme and a given bound on the E-infinity norm of the disturbances, conditions are established, in terms of linear or bilinear matrix inequalities, under which a set of a certain form is invariant for a given switched linear system in the presence of actuator saturation and E-infinity disturbances, and the closed-loop system possesses a certain level of disturbance rejection capability. With these conditions, the design of feedback gains and switching scheme can be formulated and solved as constrained optimization problems. Disturbance tolerance is measured by the largest bound on the disturbances for which the trajectories starting from a given set remain bounded. Disturbance rejection is measured either by the E-infinity norm of the system output or by the system's ability to steer its state into and/or keep it within a small neighborhood of the origin. In the event that all systems in the family are identical, the switched system reduces to a single system under a switching feedback law. Simulation results show that such a single system under a switching feedback law could have stronger disturbance tolerance/rejection capability than a single linear feedback law can.展开更多
An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The...An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work.展开更多
The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = ...The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations.展开更多
In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations ...In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.展开更多
In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth...In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.展开更多
More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 ...More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 + c(c ∈^C), the range of parameter c is expanded largely and a result on the Hausdorff dimension of its Julia set is gained. Similarly, a better result is obtained for cubic function fc(z) = z^3 + c(c ∈ ^C).展开更多
The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.I...The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.In the given receding horizon,for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter,the cost function is optimized by constraints on state trajectories,so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set.Out of the receding horizon,the stability is guaranteed by searching a state feedback control law.Based on such stability analysis,a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed.The simulation shows the validity of this method.展开更多
In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a sm...In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a small parameter, I<sub>α</sub> is the Riesz potential. We establish for small ε the existence of a sequence of sign-changing solutions concentrating near a given local minimum point of the bounded potential function V by using the method of invariant sets of descending flow, perturbation method and truncation technique. .展开更多
Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies ...Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predi...This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predictive control(ET-MPC) strategy to reduce the unnecessary communication while promising the system performance. On one hand, for a linear discrete time-invariant system, a triggering condition is derived based on the Lyapunov stability. Here, in order to further reduce the communication rate, we enforce a triggering condition only when the Lyapunov function will exceed its value at the last triggered time, but an average decrease is guaranteed. On the other hand, the feasibility is ensured by minimizing and optimizing the terminal constrained set between the maximal control invariant set and the target terminal set. Finally, we provide a simulation to verify the theoretical results. It's shown that the proposed strategy achieves a good trade-off between the closed-loop system performance and communication rate.展开更多
The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed...The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed to obtain the estimation of the domain of attraction of the closed-loop system. A family of linear matrix inequalities (LMIs) that provides sufficient conditions for the existence of this type of Lyapunov function are presented. The results obtained in this paper can reduce the conservativeness compared with the existing ones. Numerical examples are given to illustrate the effectiveness of the proposed results.展开更多
This paper is a sequel to a previous paper (Yang, Y. and Zhang, J. H. Existence of solutions for some fourth-order boundary value problems with parameters. Nonlinear Anal. 69(2), 1364-1375 (2008)) in which the n...This paper is a sequel to a previous paper (Yang, Y. and Zhang, J. H. Existence of solutions for some fourth-order boundary value problems with parameters. Nonlinear Anal. 69(2), 1364-1375 (2008)) in which the nontrivial solutions to the fourthorder boundary value problems were studied. In the current work with the same conditions near infinity but different near zero, the positive, negative, and sign-changing solutions are obtained by the critical point theory, retracting property, and invariant sets.展开更多
A sufficient condition of the existence of a positive invariant set in the differential equation on Banach space is given, which improves a theorem of Mitio Nagumo.
文摘By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.
文摘A novel La Shalle's invariant set theory (LSIST) based adaptive asymptotic synchronization (LSISAAS) method is proposed to asymptotically synchronize Duffing system with unknown parameters which also are considered as system states. The LSISASS strategy depends on the only information, i.e. one state of the master system. According to the LSIST, the LSISASS method can asymptotically synchronize fully the states of the master system and the unknown system parameters as well. Simulation results also validate that the LSISAAS approach can obtain asymptotic synchronization.
文摘This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and intersect the switching manifold at two points and the switching manifold is composed of two perpendicular planes.
基金supported by the Mathematical Tianyuan Foundation (No. 10826078)the National Natural Science Foundation of China (No. 60874006)
文摘This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.
文摘A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].
文摘This paper considers the problem of disturbance tolerance/rejection of a switched system resulting from a family of linear systems subject to actuator saturation and E-infinity disturbances. For a given set of linear feedback gains, a given switching scheme and a given bound on the E-infinity norm of the disturbances, conditions are established, in terms of linear or bilinear matrix inequalities, under which a set of a certain form is invariant for a given switched linear system in the presence of actuator saturation and E-infinity disturbances, and the closed-loop system possesses a certain level of disturbance rejection capability. With these conditions, the design of feedback gains and switching scheme can be formulated and solved as constrained optimization problems. Disturbance tolerance is measured by the largest bound on the disturbances for which the trajectories starting from a given set remain bounded. Disturbance rejection is measured either by the E-infinity norm of the system output or by the system's ability to steer its state into and/or keep it within a small neighborhood of the origin. In the event that all systems in the family are identical, the switched system reduces to a single system under a switching feedback law. Simulation results show that such a single system under a switching feedback law could have stronger disturbance tolerance/rejection capability than a single linear feedback law can.
基金supported by the National Natural Science Foundation of China (60702033)Natural Science Foundation of Zhe-jiang Province (Y107440)
文摘An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030 and 10502042the Natural Science Foundation of Shanxi Province under Grant No.2003A03
文摘In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030,and 10502042the Natural Science Foundation of Shaanxi Province under Grant No.2003A03
文摘In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.
文摘More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 + c(c ∈^C), the range of parameter c is expanded largely and a result on the Hausdorff dimension of its Julia set is gained. Similarly, a better result is obtained for cubic function fc(z) = z^3 + c(c ∈ ^C).
基金supported by the National Natural Science Foundation of China (6097400160904045)+1 种基金National Natural Science Foundation of Jiangsu Province (BK2009068)Six Projects Sponsoring Talent Summits of Jiangsu Province
文摘The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.In the given receding horizon,for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter,the cost function is optimized by constraints on state trajectories,so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set.Out of the receding horizon,the stability is guaranteed by searching a state feedback control law.Based on such stability analysis,a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed.The simulation shows the validity of this method.
文摘In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a small parameter, I<sub>α</sub> is the Riesz potential. We establish for small ε the existence of a sequence of sign-changing solutions concentrating near a given local minimum point of the bounded potential function V by using the method of invariant sets of descending flow, perturbation method and truncation technique. .
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60274007,60474011)the Guangdong Povince Science Foundation for Program of Research Team(Grant No.04205783).
文摘Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by the National Natural Science Foundation of China(61233004,61590924,61521063)
文摘This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predictive control(ET-MPC) strategy to reduce the unnecessary communication while promising the system performance. On one hand, for a linear discrete time-invariant system, a triggering condition is derived based on the Lyapunov stability. Here, in order to further reduce the communication rate, we enforce a triggering condition only when the Lyapunov function will exceed its value at the last triggered time, but an average decrease is guaranteed. On the other hand, the feasibility is ensured by minimizing and optimizing the terminal constrained set between the maximal control invariant set and the target terminal set. Finally, we provide a simulation to verify the theoretical results. It's shown that the proposed strategy achieves a good trade-off between the closed-loop system performance and communication rate.
基金supported by the National Creative Research Groups Science Foundation of China (No.60721062)the National High Technology Research and Development Program of China (863 Program) (No.2006AA04 Z182)National Natural Science Foundation of China (No.60736021)
文摘The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed to obtain the estimation of the domain of attraction of the closed-loop system. A family of linear matrix inequalities (LMIs) that provides sufficient conditions for the existence of this type of Lyapunov function are presented. The results obtained in this paper can reduce the conservativeness compared with the existing ones. Numerical examples are given to illustrate the effectiveness of the proposed results.
基金Project supported by the National Natural Science Foundation of China (No. 10871096)the Foun-dation of Major Project of Science and Technology of Chinese Education Ministry (No. 205056)+2 种基金the Project of Graduate Education Innovation of Jiangsu Province (No. CX09B_284Z)the Foundation for Outstanding Doctoral Dissertation of Nanjing Normal Universitythe Foundation for Young Teachers of Jiangnan University (No. 2008LQN008)
文摘This paper is a sequel to a previous paper (Yang, Y. and Zhang, J. H. Existence of solutions for some fourth-order boundary value problems with parameters. Nonlinear Anal. 69(2), 1364-1375 (2008)) in which the nontrivial solutions to the fourthorder boundary value problems were studied. In the current work with the same conditions near infinity but different near zero, the positive, negative, and sign-changing solutions are obtained by the critical point theory, retracting property, and invariant sets.
文摘A sufficient condition of the existence of a positive invariant set in the differential equation on Banach space is given, which improves a theorem of Mitio Nagumo.