Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with ...Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with swept transistor width, we found that gate leakage is not always a linear function of the device geometry. Subsequently, this paper presented the theoretical analysis and experimental evidence of this exceptional gate leakage behavior and developed a design methodology to devise a low-leakage and high-performance buffer with no penalty in area using this deviation.展开更多
基金Supported by the National Natural Science Foundation of China(No.61271149)
文摘Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with swept transistor width, we found that gate leakage is not always a linear function of the device geometry. Subsequently, this paper presented the theoretical analysis and experimental evidence of this exceptional gate leakage behavior and developed a design methodology to devise a low-leakage and high-performance buffer with no penalty in area using this deviation.