By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The ...By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.展开更多
As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the inte...As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the interfacial heat transfer coefficient(IHTC) is an important boundary condition in numerical simulation. Therefore, the study of the IHTC is of great significance. In the present study, experiments were conducted and a "plate shape" aluminum alloy casting was cast in H13 steel die. In order to obtain accurate temperature readings inside the die, a special temperature sensor units(TSU) was designed. Six 1 mm wide and 1 mm deep grooves were machined in the sensor unit for the placement of the thermocouples whose tips were welded to the end wall. Each groove was machined to terminate at a particular distance(1, 3, and 6 mm) from the front end of the sensor unit. Based on the temperature measurements inside the die, the interfacial heat transfer coefficient(IHTC) at the metal-die interface was determined by applying an inverse approach. The acquired data were processed by a low pass filtering method based on Fast Fourier Transform(FFT). The feature of the IHTC at the metal-die interface was discussed.展开更多
基金Project supported by the National Natural Sciences Foundation of China(No. 50335060).
文摘By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.
基金supported by the National Science and Technology Major Project of China(2017ZX04080001)the National Key Research and Development Program of China(2016YFB0701204)
文摘As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the interfacial heat transfer coefficient(IHTC) is an important boundary condition in numerical simulation. Therefore, the study of the IHTC is of great significance. In the present study, experiments were conducted and a "plate shape" aluminum alloy casting was cast in H13 steel die. In order to obtain accurate temperature readings inside the die, a special temperature sensor units(TSU) was designed. Six 1 mm wide and 1 mm deep grooves were machined in the sensor unit for the placement of the thermocouples whose tips were welded to the end wall. Each groove was machined to terminate at a particular distance(1, 3, and 6 mm) from the front end of the sensor unit. Based on the temperature measurements inside the die, the interfacial heat transfer coefficient(IHTC) at the metal-die interface was determined by applying an inverse approach. The acquired data were processed by a low pass filtering method based on Fast Fourier Transform(FFT). The feature of the IHTC at the metal-die interface was discussed.