The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed a...The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed according to our calculation results in the paper. In the condition of selecting the learning samples properly, the artificial neural network has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inverse design problem in the electron optic system.展开更多
Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak...Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.展开更多
Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a s...Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices.展开更多
An inverse design of electrostatic focusing field for electrostatic and magneticimaging is investigated.Using the potential superimposition theorem of electrostatic field inmulti-electrode system,a mathematical model ...An inverse design of electrostatic focusing field for electrostatic and magneticimaging is investigated.Using the potential superimposition theorem of electrostatic field inmulti-electrode system,a mathematical model has been developed and an optimization methodhas been introduced into computation for designing the electrostatic focusing field of the imagingsystem.展开更多
Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP...Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP,we proposed an optical diffraction method according to the real system conditions.A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program.Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly,which is similar to the G-S algorithm.The results show that using the optical diffraction method can design a CPP for a complicated laser system,and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system.The method can improve the adaptation of the phase plate in systems with phase aberrations.展开更多
Mode splitters that directly separate modes without changing their orders are highly promising to improve the flexibility of the mode-division multiplexing systems.In this paper,we design a high-performance mode split...Mode splitters that directly separate modes without changing their orders are highly promising to improve the flexibility of the mode-division multiplexing systems.In this paper,we design a high-performance mode splitter on the silicon-oninsulator platform with a compact footprint of 14μm×2.5μm using an inverse design method based on shape optimization.The fabrication of this mode splitter requires only a single lithography step and exhibits good fabrication tolerances.The experimental results show that the proposed device exhibits state-of-the-art insertion loss(<0.9 dB)and cross talk(<-16 dB)over a broad bandwidth(1500-1600 nm).Furthermore,the shape optimization method used is implemented to design a dual-mode(de)multiplexer,and the experimental results fulfill the design objective,demonstrating the excellent generality of the design method in this paper.展开更多
Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations o...Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint.The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error < 10-4 and a mere 4*4 um2 footprint.Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST.展开更多
Freeform optical surfaces (FOSs) will be the best elements in the design of compact optical systems in the future. However, it is extremely difficult to measure freeform surface with sufficient accuracy, which im- p...Freeform optical surfaces (FOSs) will be the best elements in the design of compact optical systems in the future. However, it is extremely difficult to measure freeform surface with sufficient accuracy, which im- pedes the development of the freeform surface. The design and fabrication of computer-generated hologram (CGH) , which has been successfully applied to the tests for aspheric surfaces, cannot be directly adopted to test FOSs due to their non-rotational asymmetry. A novel ray tracing planning method combined with successively optimizing even and odd power coefficients of phase polynomials in turn is proposed, which can successfully design a non-rotational asymmetry CGH for the tests of FOSs with an F-O lens. A new eight-step fabrication process is also presented aiming to solve the problem that the linewidth on the same circle of the CGH for testing freeform surface is not uniform. This problem cannot be solved in the original procedure of CGH fabrication. The test results of the step profiler show that the CGH fabricated in the new nrocedure meets the reauirements.展开更多
基金the Scientific Research Foundation for Returned Overseas Chinese Scholars, State EducationCommission.
文摘The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed according to our calculation results in the paper. In the condition of selecting the learning samples properly, the artificial neural network has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inverse design problem in the electron optic system.
基金National Nature Science Foundation of China (Nos. 10235010/ 10335000)
文摘Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.
基金We are grateful for financial supports from National Natural Science Foundation of China(62004166)Natural Science Foundation of Ningbo(202003N4062)+2 种基金National Postdoctoral Program for Innovative Talents(BX20200279)Natural Science Basic Research Program of Shaanxi Province(2020JQ-199)Fundamental Research Funds for the Central Universities(31020190QD027).
文摘Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices.
文摘An inverse design of electrostatic focusing field for electrostatic and magneticimaging is investigated.Using the potential superimposition theorem of electrostatic field inmulti-electrode system,a mathematical model has been developed and an optimization methodhas been introduced into computation for designing the electrostatic focusing field of the imagingsystem.
文摘Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP,we proposed an optical diffraction method according to the real system conditions.A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program.Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly,which is similar to the G-S algorithm.The results show that using the optical diffraction method can design a CPP for a complicated laser system,and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system.The method can improve the adaptation of the phase plate in systems with phase aberrations.
基金supported by the National Natural Science Foundation of China(Nos.62105167,62075188,and 61974078)the Natural Science Foundation of Zhejiang Province(Nos.LQ22F050008 and LY21F050007)+1 种基金the Natural Science Foundation of Ningbo(Nos.2021J074 and 2021J059)the Key Research and Development Program of Jiangsu Province(No.BE2021082)。
文摘Mode splitters that directly separate modes without changing their orders are highly promising to improve the flexibility of the mode-division multiplexing systems.In this paper,we design a high-performance mode splitter on the silicon-oninsulator platform with a compact footprint of 14μm×2.5μm using an inverse design method based on shape optimization.The fabrication of this mode splitter requires only a single lithography step and exhibits good fabrication tolerances.The experimental results show that the proposed device exhibits state-of-the-art insertion loss(<0.9 dB)and cross talk(<-16 dB)over a broad bandwidth(1500-1600 nm).Furthermore,the shape optimization method used is implemented to design a dual-mode(de)multiplexer,and the experimental results fulfill the design objective,demonstrating the excellent generality of the design method in this paper.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0205700)the National Natural Science Foundation of China(61927820)Yurui Qu was supported by Zhejiang Lab’s International Talent Fund for Young Professionals.
文摘Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint.The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error < 10-4 and a mere 4*4 um2 footprint.Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST.
基金supported by the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2012802
文摘Freeform optical surfaces (FOSs) will be the best elements in the design of compact optical systems in the future. However, it is extremely difficult to measure freeform surface with sufficient accuracy, which im- pedes the development of the freeform surface. The design and fabrication of computer-generated hologram (CGH) , which has been successfully applied to the tests for aspheric surfaces, cannot be directly adopted to test FOSs due to their non-rotational asymmetry. A novel ray tracing planning method combined with successively optimizing even and odd power coefficients of phase polynomials in turn is proposed, which can successfully design a non-rotational asymmetry CGH for the tests of FOSs with an F-O lens. A new eight-step fabrication process is also presented aiming to solve the problem that the linewidth on the same circle of the CGH for testing freeform surface is not uniform. This problem cannot be solved in the original procedure of CGH fabrication. The test results of the step profiler show that the CGH fabricated in the new nrocedure meets the reauirements.