Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me...Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.展开更多
The purpose of this research was to suggest an applicable procedure for computing the centroid moment tensor(CMT)automatically and in real time from earthquakes that occur in Indonesia and the surrounding areas.Gisola...The purpose of this research was to suggest an applicable procedure for computing the centroid moment tensor(CMT)automatically and in real time from earthquakes that occur in Indonesia and the surrounding areas.Gisola software was used to estimate the CMT solution by selecting the velocity model that best suited the local and regional geological conditions in Indonesia and the surrounding areas.The data used in this study were earthquakes with magnitudes of 5.4 to 8.0.High-quality,real-time broadband seismographic data were provided by the International Federation of Digital Seismograph Networks Web Services(FDSNWS)and the European Integrated Data Archive(EIDA)Federation in Indonesia and the surrounding areas.Furthermore,the inversion process and filter adjustment were carried out on the seismographic data to obtain good CMT solutions.The CMT solutions from Gisola provided good-quality solutions,in which all earthquake data had A-level quality(high quality,with good variant reduction).The Gisola CMT solution was justified with the Global CMT(GCMT)solution by using the Kagan angle value,with an average of approximately 11.2°.This result suggested that the CMT solution generated from Gisola was trustworthy and reliable.The Gisola CMT solution was typically available within approximately 15 minutes after an earthquake occurred.Once it met the quality requirement,it was automatically published on the internet.The catalog of local and regional earthquake records obtained through this technology holds great promise for improving the current understanding of regional seismic activity and ongoing tectonic processes.The accurate and real-time CMT solution generated by implementing the Gisola algorithm consisted of moment tensors and moment magnitudes,which provided invaluable insights into earthquakes occurring in Indonesia and the surrounding areas.展开更多
This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t...This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.展开更多
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act...On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future.展开更多
基金The National Natural Science Foundation of China under contract No.42076214.
文摘Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.
基金Universitas Negeri Surabaya,Universitas Sebelas Maret,and Universitas Syiah Kuala for providing research grants for the Indonesian Collaborative Research(RKI)scheme。
文摘The purpose of this research was to suggest an applicable procedure for computing the centroid moment tensor(CMT)automatically and in real time from earthquakes that occur in Indonesia and the surrounding areas.Gisola software was used to estimate the CMT solution by selecting the velocity model that best suited the local and regional geological conditions in Indonesia and the surrounding areas.The data used in this study were earthquakes with magnitudes of 5.4 to 8.0.High-quality,real-time broadband seismographic data were provided by the International Federation of Digital Seismograph Networks Web Services(FDSNWS)and the European Integrated Data Archive(EIDA)Federation in Indonesia and the surrounding areas.Furthermore,the inversion process and filter adjustment were carried out on the seismographic data to obtain good CMT solutions.The CMT solutions from Gisola provided good-quality solutions,in which all earthquake data had A-level quality(high quality,with good variant reduction).The Gisola CMT solution was justified with the Global CMT(GCMT)solution by using the Kagan angle value,with an average of approximately 11.2°.This result suggested that the CMT solution generated from Gisola was trustworthy and reliable.The Gisola CMT solution was typically available within approximately 15 minutes after an earthquake occurred.Once it met the quality requirement,it was automatically published on the internet.The catalog of local and regional earthquake records obtained through this technology holds great promise for improving the current understanding of regional seismic activity and ongoing tectonic processes.The accurate and real-time CMT solution generated by implementing the Gisola algorithm consisted of moment tensors and moment magnitudes,which provided invaluable insights into earthquakes occurring in Indonesia and the surrounding areas.
文摘This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.
基金support from the National Natural Science Foundation of China(Nos.42104043,42374081,and U2039208)the Fundamental Research Funds for the Institute of Geophysics,China Earthquake Administration(No.DQJB22R35).
文摘On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future.