期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于MFCC-IMFCC混合倒谱的托辊轴承故障诊断
1
作者 陶瀚宇 陈换过 +2 位作者 彭程程 高祥冲 杨磊 《机电工程》 CAS 北大核心 2024年第7期1215-1222,共8页
针对梅尔倒谱系数(MFCC)对托辊轴承高频特征提取能力不足的问题,提出了一种基于梅尔倒谱系数和翻转梅尔倒谱系数(MFCC-IMFCC)的混合倒谱以及长短时记忆(LSTM)网络的托辊轴承故障诊断方法。首先,分析了三种状态下的托辊声音信号,明确了... 针对梅尔倒谱系数(MFCC)对托辊轴承高频特征提取能力不足的问题,提出了一种基于梅尔倒谱系数和翻转梅尔倒谱系数(MFCC-IMFCC)的混合倒谱以及长短时记忆(LSTM)网络的托辊轴承故障诊断方法。首先,分析了三种状态下的托辊声音信号,明确了托辊轴承故障信息主要分布在中高频区域;然后,为有效保留高频信息,提取了MFCC-IMFCC,以帧级串联的方式组成了混合倒谱特征;最后,将混合倒谱特征输入到双层LSTM模型中进行了训练,建立了托辊轴承故障诊断模型。研究结果表明:针对托辊正常、滚动体故障和偏心旋转故障三种状态,LSTM结合混合倒谱特征的平均识别准确率达到96.72%,相比于单一的MFCC和IMFCC特征,准确率分别提升3.94%和7.41%,凸显了混合倒谱特征在表征托辊轴承故障信息方面的显著优势。 展开更多
关键词 托辊轴承 轴承故障声音信号 高频信息 梅尔倒谱系数 翻转梅尔倒谱系数 混合倒谱系数 长短时记忆网络
下载PDF
基于MFCC-IMFCC和GA-SVM的鸟声识别 被引量:8
2
作者 韩鹏飞 陈晓 《计算机系统应用》 2022年第11期393-399,共7页
鸟声识别研究中声音特征选取对识别分类的准确度有很大影响.为了提高鸟声识别正确率,针对传统的梅尔倒谱系数(MFCC)对鸟声高频信息表征不足.提出了基于Fisher准则MFCC和翻转梅尔倒谱系数(IMFCC)的特征融合,得到新的特征参数MFCC-IMFCC... 鸟声识别研究中声音特征选取对识别分类的准确度有很大影响.为了提高鸟声识别正确率,针对传统的梅尔倒谱系数(MFCC)对鸟声高频信息表征不足.提出了基于Fisher准则MFCC和翻转梅尔倒谱系数(IMFCC)的特征融合,得到新的特征参数MFCC-IMFCC应用于鸟声识别,提高对鸟声高频信息表征.同时通过遗传算法(GA)对支持向量机(SVM)中的惩罚因子C和核参数g进行优化,训练出GA-SVM分类模型.实验表明,在同一条件下,MFCC-IMFCC与MFCC相比,识别率有一定的提高. 展开更多
关键词 梅尔倒谱系数 逆梅尔倒谱系数 FISHER准则 GA-SVM 声音识别
下载PDF
基于梅尔频率倒谱系数与翻转梅尔频率倒谱系数的说话人识别方法 被引量:19
3
作者 胡峰松 张璇 《计算机应用》 CSCD 北大核心 2012年第9期2542-2544,共3页
为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。实验结果表明,新的混合特征参数与MFC... 为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。实验结果表明,新的混合特征参数与MFCC相比,在纯净语音库及噪声环境中均具有较好的识别性能。 展开更多
关键词 说话人识别 梅尔频率倒谱系数 翻转梅尔频率倒谱系数 FISHER准则 高斯混合模型
下载PDF
一种适用于说话人识别的改进Mel滤波器 被引量:8
4
作者 项要杰 杨俊安 +1 位作者 李晋徽 陆俊 《计算机工程》 CAS CSCD 2013年第11期214-217,222,共5页
Mel倒谱系数(MFCC)侧重提取语音信号的低频信息,对语音信号的频谱分布特性描述不充分,不能有效区分说话人个性信息。为此,通过分析语音信号各频段所含说话人个性信息的不同,结合Mel滤波器和反Mel滤波器在高低频段的不同特性,提出一种适... Mel倒谱系数(MFCC)侧重提取语音信号的低频信息,对语音信号的频谱分布特性描述不充分,不能有效区分说话人个性信息。为此,通过分析语音信号各频段所含说话人个性信息的不同,结合Mel滤波器和反Mel滤波器在高低频段的不同特性,提出一种适于说话人识别的改进Mel滤波器。实验结果表明,改进Mel滤波器提取的新特征能够获得比传统Mel倒谱系数以及反Mel倒谱系数(IMFCC)更好的识别效果,并且基本不增加说话人识别系统训练和识别的时间开销。 展开更多
关键词 说话人识别 MEL倒谱系数 个性信息 反Mel倒谱系数 频谱分布 语音信号
下载PDF
基于Fisher比的梅尔倒谱系数混合特征提取方法 被引量:16
5
作者 鲜晓东 樊宇星 《计算机应用》 CSCD 北大核心 2014年第2期558-561,579,共5页
针对语音识别中梅尔倒谱系数(MFCC)对中高频信号的识别精度不高,并且没有考虑各维特征参数对识别结果影响的问题,提出基于MFCC、逆梅尔倒谱系数(IMFCC)和中频梅尔倒谱系数(MidMFCC),并结合Fisher准则的特征提取方法。首先对语音信号提取... 针对语音识别中梅尔倒谱系数(MFCC)对中高频信号的识别精度不高,并且没有考虑各维特征参数对识别结果影响的问题,提出基于MFCC、逆梅尔倒谱系数(IMFCC)和中频梅尔倒谱系数(MidMFCC),并结合Fisher准则的特征提取方法。首先对语音信号提取MFCC、IMFCC和MidMFCC三种特征参数,分别计算三种特征参数中各维分量的Fisher比,通过Fisher比对三种特征参数进行选择,组成一种混合特征参数,提高语音中高频信息的识别精度。实验结果表明,在相同环境下,新的特征与MFCC参数相比,识别率有一定程度的提高。 展开更多
关键词 识别精度 梅尔倒谱系数 逆梅尔倒谱系数 中频梅尔倒谱系数 FISHER准则
下载PDF
基于频率段的语音识别算法设计与实现 被引量:1
6
作者 袁正午 肖旺辉 《计算机工程与设计》 CSCD 北大核心 2011年第2期659-662,共4页
线性预测倒谱参数(LPCC)能很好的体现人的声道特性,而梅尔倒谱参数(MFCC)能很好的模拟人耳的听觉效应。针对MFCC在不同频率段的识别精度不一致和LPCC不能准确模拟人的听觉系统问题,将MFCC参数和IMFCC参数分别作为语音不同频率段的特征参... 线性预测倒谱参数(LPCC)能很好的体现人的声道特性,而梅尔倒谱参数(MFCC)能很好的模拟人耳的听觉效应。针对MFCC在不同频率段的识别精度不一致和LPCC不能准确模拟人的听觉系统问题,将MFCC参数和IMFCC参数分别作为语音不同频率段的特征参数,结合线性预测参数(LPCC),均衡滤波器的分布,完整覆盖到整个频率段范围。将梅尔倒谱参数和线性预测参数结合起来作为语音识别的特征提取参数。实验结果表明,改进之后的算法从效率上和识别率上都有不同程度的提高。 展开更多
关键词 线性预测参数(LPCC) 梅尔倒谱系数(mfcc) 逆梅尔倒谱系数(imfcc) 语音识别 特征提取
下载PDF
说话人识别特征提取算法改进 被引量:1
7
作者 魏君颖 魏维 《成都信息工程学院学报》 2014年第S1期67-70,共4页
特征提取是说话人识别系统中非常重要的一部分,是否能提取有效的特征决定了系统的识别效果。MFCC是目前主流的特征提取方法之一,能够在噪音环境下保持良好的鲁棒性。在MFCC的基础上提出一种改进的特征提取方法,该方法主要构造了一种MFC... 特征提取是说话人识别系统中非常重要的一部分,是否能提取有效的特征决定了系统的识别效果。MFCC是目前主流的特征提取方法之一,能够在噪音环境下保持良好的鲁棒性。在MFCC的基础上提出一种改进的特征提取方法,该方法主要构造了一种MFCC与翻转梅尔频率倒谱系数(IMFCC)相结合的混合特征参数。实验结果表明,新特征参数在相同的环境下比传统的MFCC特征参数的识别率高。 展开更多
关键词 说话人识别 特征提取 mfcc imfcc
下载PDF
基于STM32单片机的嵌入式语音识别系统设计 被引量:11
8
作者 陈心灵 钱宁博 +1 位作者 胡佳辉 王战中 《机电工程技术》 2019年第6期135-137,共3页
设计了一款以STM32F103为核心的自然语言识别系统,为满足实时语音识别系统对内存资源和运算速度的要求,基于硬件资源合理设计语音处理算法,在嵌入式平台上实现了对孤立词语的语音识别。首先根据背景噪声和语音信号的时域特征差异设定相... 设计了一款以STM32F103为核心的自然语言识别系统,为满足实时语音识别系统对内存资源和运算速度的要求,基于硬件资源合理设计语音处理算法,在嵌入式平台上实现了对孤立词语的语音识别。首先根据背景噪声和语音信号的时域特征差异设定相应门限值,从而实现了对语音信号的端点检测。然后针对语音识别中传统梅尔倒谱系数对语音的高频信息敏感度较低,对语音信号分别提取梅尔倒谱系数(MFCC)与翻转梅尔倒谱系数(IMFCC),结合Fisher准则构造混合特征参数。最后采用动态时间规整算法实现语音识别。因系统体积小、便携性好等特点,易于实现对不同设备的语音控制,有一定的市场前景。 展开更多
关键词 语音识别 梅尔倒谱系数 翻转梅尔倒谱系数 FISHER准则 动态时间规整算法 STM32F103
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部