The development and influencing factors of compliance behavior of investigators in clinical trials were explored. According to literature review, a hypothetical model of development of compliance behavior of investiga...The development and influencing factors of compliance behavior of investigators in clinical trials were explored. According to literature review, a hypothetical model of development of compliance behavior of investigators in clinical trials was established, and the influencing factors of compliance behavior of investigators and their interrelationships were studied based on questionnaire survey of five hundred investigators sampled randomly from one hundred clinical trial institutions in China. Cron- bach's alpha coefficient and structural equation modeling were adopted to empirically analyze the re- suits. Six variables in the hypothetical model were included: compliance behavior of investigators, credibility of clinical trial, capability of government regulation, quality control of sponsor, quality con- trol of clinical institution and compliance intention of investigators. Empirical analysis showed that the compliance behavior of investigators in clinical trial was directly affected by compliance intention of investigators, quality control of sponsor and quality control of clinical institution. In addition, credibility of clinical trial and capability of government regulation indirectly affected the compliance behavior of investigators in clinical trial through influencing the compliance intention of investigators, quality con- trol of sponsor and quality control of clinical institution. Quality control of sponsor was affected by credibility of clinical trial and capability of government regulation while quality control of clinical in- stitutinn wan only influenced by capability of government regulation.展开更多
This editorial presents an analysis of an article recently published in the World Journal of Clinical Cases.Kawasaki disease(KD)is a well-known pediatric vasculitis characterized by fever,rash,conjunctivitis,oral muco...This editorial presents an analysis of an article recently published in the World Journal of Clinical Cases.Kawasaki disease(KD)is a well-known pediatric vasculitis characterized by fever,rash,conjunctivitis,oral mucosal changes,and swelling of the extremities.This editorial aims to delve into the intricate relationship between KD and abdominal pain,drawing insights from recent research findings to provide a comprehensive understanding and potential avenues for future investigation.展开更多
The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundar...The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.展开更多
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat...High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.展开更多
A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empir...A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases a...Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.展开更多
The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of...The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.展开更多
A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional ...A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
This paper provides a comprehensive overview of Deep Transient Testing(DTT),a cutting-edge technique for reservoir characterization that has revolutionized the oil and gas industry.The main aim of DTT is to characteri...This paper provides a comprehensive overview of Deep Transient Testing(DTT),a cutting-edge technique for reservoir characterization that has revolutionized the oil and gas industry.The main aim of DTT is to characterize the reservoir with a deeper radius of investigation.The optimization of the radius of investigation with the DTT approach is studied in detail.Reveal is a commercial numerical simulation application used to simulate the DTT process and evaluate the pressure wave analysis in the porous media.The main aim of the simulation is to understand the impact of the reservoir quality on the pressure response and use it to address the noise-to-pule ratio,which is a determinantal parameter in testing duration.The tested wells with the DTT tool show that measured well productivity can deliver the minimum commercial rate.The has been delivered within 2 days compared to the potential test time of 21 days which saved the 19 rig days and contributed to C02 emission reduction of(gas flaring 1340+rig emission 600)1940 Metric tons equivalent to 421 cars emission in a year.However,DTT also presents certain limitations,such as the requirement for specialized equipment and expertise,as well as the potential for formation damage during testing.This study provides a detailed description of the DTT technique,encompassing its history,theory,and practical applications.Furthermore,it discusses the benefits and limitations of DTT and presents case studies to illustrate its effectiveness across various reservoir types.Overall,this study serves as a valuable resource for reservoir engineers,geologists,and other professionals involved in the exploration and production of oil and gas.展开更多
BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but...BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.展开更多
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit att...To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.展开更多
Background: We currently have international and national guidelines regarding the assessment and monitoring of clinical signs and humane endpoints in animals used in teaching and research, which make the performance o...Background: We currently have international and national guidelines regarding the assessment and monitoring of clinical signs and humane endpoints in animals used in teaching and research, which make the performance of these activities mandatory for any experiment and professional working in this area. Assigning the severity of a research experiment is the result of an analysis of records of observations of the animal’s behavior, and clinical signs. The aim of this study was to describe the importance of carrying out a severity assessment associated with clinical and behavioral monitoring of rodents and rabbits during experimentation to maintain the welfare of these animals undergoing scientific research. Methods: The literature search was carried out using the following terms: “Monitoring”;“Humane endpoints”;“Animal welfare”, “Rodents”;“Rabbits”, and as connectors “and”;“or”, in the following databases: PubMed;LILACS/BIREME and SciELO. Results: A total of 987 articles were identified in the databases, and 20 of these studies were included in this review. Conclusions: Humane endpoint protocols and procedure severity tables are of the utmost importance, both from an ethical point and to refine the results of research conducted on laboratory animals. They should be drawn up jointly by the teams responsible for the project and the maintenance of the animals during the research period, and the data obtained should be published so that the scientific community can have access to it, helping to disseminate these practices, as well as helping to draw up new procedures. Monitoring and evaluating the welfare and clinical condition of animals undergoing scientific research procedures is the responsibility of the professors, researchers, veterinarians, and animal facility coordinators. The Ethics Committee on the Use of Animals must monitor all the activities conducted with the animals, by inspecting the experimental procedures and the physical environment of the laboratory animal facility where the animals are housed.展开更多
At the legislative level in China,there has been insufficient theoretical preparation to explicitly include“sexual autonomy”within the scope of general personality rights.In handling the increasing number of dispute...At the legislative level in China,there has been insufficient theoretical preparation to explicitly include“sexual autonomy”within the scope of general personality rights.In handling the increasing number of disputes related to violations of“sexual autonomy,”judicial biases have emerged during the trial process when courts determine the attribute of the right to“sexual autonomy.”This situation necessitates a clear legal analysis of the concept and attributes of“sexual autonomy”to establish its essential attribute as a personality right,and,from the perspective of legal doctrine,enable the justification of the right to“sexual autonomy”as either a general personality right or other personality interests,thereby providing theoretical support for courts to“adjudicate according to law.”By delineating and categorizing instances of violations of“sexual autonomy,”the constitutive elements and fundamental characteristics of such violations can be clarified.By examining the legal norms governing civil litigation and civil litigation associated with criminal cases concerning violations of“sexual autonomy,”the responsibility determination,remedies,and existing regulatory loopholes regarding violations of“sexual autonomy,”especially in cases involving both criminal and civil matters,can be defined.Based on this foundation,the legal basis,determination mechanism,and compensation standards for claiming compensation for mental damages resulting from violations of“sexual autonomy”can be elucidated.展开更多
Modern drugs have changed epilepsy,which affects people of all ages.However,for young people with epilepsy,the framework of drug development has stalled.In the wake of the thalidomide catastrophe,the misconception eme...Modern drugs have changed epilepsy,which affects people of all ages.However,for young people with epilepsy,the framework of drug development has stalled.In the wake of the thalidomide catastrophe,the misconception emerged that for people<18 years of age drugs,including antiseizure medications(ASMs),need separate proof of efficacy and safety,overall called"pediatric drug development".For ASMs,this has changed to some degree.Authorities now accept that ASMs are effective in<18 years as well,but they still require"extrapolation of efficacy,"as if minors were another species.As a result,some of the pediatric clinical epilepsy research over the past decades was unnecessary.Even more importantly,this has hampered research on meaningful research goals.We do not need to confirm that ASMs work before as they do after the 18th birthday.Instead,we need to learn how to prevent brain damage in young patients by preventing seizures and optimize ASMs’uses.Herein we discuss how to proceed in this endeavor.展开更多
The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of th...The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission.展开更多
This study aims to explore the impact of physical exercise on the anxiety level of college students.We collected physical exercise data and anxiety self-assessment results from college students of different grades,gen...This study aims to explore the impact of physical exercise on the anxiety level of college students.We collected physical exercise data and anxiety self-assessment results from college students of different grades,genders,and ages from multiple universities in Guangdong Province through a questionnaire survey.The study used standardized scales to evaluate participants’physical exercise types,frequencies,intensities,and anxiety levels.The data analysis results showed that there is a significant negative correlation between college students’physical exercise and anxiety level,that is,the more frequent and intense the physical exercise,the lower the anxiety level.In addition,there are differences in the effect of different types of physical exercises on anxiety relief,with aerobic exercises such as running and swimming showing more significant anxiety-relieving effects.The research results provide valuable references for psychological health education and anxiety intervention strategies in universities and suggest promoting physical exercise to effectively alleviate college students’anxiety.展开更多
文摘The development and influencing factors of compliance behavior of investigators in clinical trials were explored. According to literature review, a hypothetical model of development of compliance behavior of investigators in clinical trials was established, and the influencing factors of compliance behavior of investigators and their interrelationships were studied based on questionnaire survey of five hundred investigators sampled randomly from one hundred clinical trial institutions in China. Cron- bach's alpha coefficient and structural equation modeling were adopted to empirically analyze the re- suits. Six variables in the hypothetical model were included: compliance behavior of investigators, credibility of clinical trial, capability of government regulation, quality control of sponsor, quality con- trol of clinical institution and compliance intention of investigators. Empirical analysis showed that the compliance behavior of investigators in clinical trial was directly affected by compliance intention of investigators, quality control of sponsor and quality control of clinical institution. In addition, credibility of clinical trial and capability of government regulation indirectly affected the compliance behavior of investigators in clinical trial through influencing the compliance intention of investigators, quality con- trol of sponsor and quality control of clinical institution. Quality control of sponsor was affected by credibility of clinical trial and capability of government regulation while quality control of clinical in- stitutinn wan only influenced by capability of government regulation.
基金Supported by The Hubei Pediatric Alliance Medical Research Project,No.HPAMRP202117。
文摘This editorial presents an analysis of an article recently published in the World Journal of Clinical Cases.Kawasaki disease(KD)is a well-known pediatric vasculitis characterized by fever,rash,conjunctivitis,oral mucosal changes,and swelling of the extremities.This editorial aims to delve into the intricate relationship between KD and abdominal pain,drawing insights from recent research findings to provide a comprehensive understanding and potential avenues for future investigation.
基金The research work described herein was funded by the National Nature Science Foundation of China(Grant No.41877213).This financial support is gratefully acknowledged.
文摘The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.
基金financed by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2023K022)the Natural Science Foundation of Hubei Province(No.2022CFA011).
文摘High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.
基金Natural Science Foundation of Hubei Province of China for Distinguished Young Scholars (2023AFA099)Natural Science Foundation of Hubei Province of China for Key Projects (Innovation Group) (2023AFA030)National Natural Science Foundation of China (52178471)。
文摘A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金supported by the National Key Research and Development Program[2022YFC2302700].
文摘Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.
基金Financial support from the National Natural Science Foundation of China(22075016 and 22103057)Fundamental Research Funds for the Central Universities(FRF-TP-20-020A3 and QNXM20220060)+1 种基金Interdisciplinary Research Project for Young Teachers of USTB(FRF-IDRY-21-011)111 Project(B170003 and B12015)
文摘The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.
基金work is supported by the Fundamental Research Funds for the Central Universities(Grant No.B230205021)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(GrantNo.KYCX22_0592).The financial supports are gratefully acknowl-edged.
文摘A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
文摘This paper provides a comprehensive overview of Deep Transient Testing(DTT),a cutting-edge technique for reservoir characterization that has revolutionized the oil and gas industry.The main aim of DTT is to characterize the reservoir with a deeper radius of investigation.The optimization of the radius of investigation with the DTT approach is studied in detail.Reveal is a commercial numerical simulation application used to simulate the DTT process and evaluate the pressure wave analysis in the porous media.The main aim of the simulation is to understand the impact of the reservoir quality on the pressure response and use it to address the noise-to-pule ratio,which is a determinantal parameter in testing duration.The tested wells with the DTT tool show that measured well productivity can deliver the minimum commercial rate.The has been delivered within 2 days compared to the potential test time of 21 days which saved the 19 rig days and contributed to C02 emission reduction of(gas flaring 1340+rig emission 600)1940 Metric tons equivalent to 421 cars emission in a year.However,DTT also presents certain limitations,such as the requirement for specialized equipment and expertise,as well as the potential for formation damage during testing.This study provides a detailed description of the DTT technique,encompassing its history,theory,and practical applications.Furthermore,it discusses the benefits and limitations of DTT and presents case studies to illustrate its effectiveness across various reservoir types.Overall,this study serves as a valuable resource for reservoir engineers,geologists,and other professionals involved in the exploration and production of oil and gas.
文摘BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
基金Supported by Youth Project of Natural Science Foundation of Anhui Province(2008085QC135)Postdoctoral Workstation Project of West Anhui University(WXBSH2020003)+4 种基金Key Program of Natural Science Research Project for Anhui Universities(KJ2021A0954)Forestry Carbon Sequestration Self-funded Science and Technology Project of Anhui Province(LJH[2022]267)Subject of Lu'an Forestry Bureau(0045021093)School-level Quality Engineering Project of West Anhui University(wxxy2021017)Provincial Quality Engineering Project of West Anhui University(2022jyxm1765).
文摘To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.
文摘Background: We currently have international and national guidelines regarding the assessment and monitoring of clinical signs and humane endpoints in animals used in teaching and research, which make the performance of these activities mandatory for any experiment and professional working in this area. Assigning the severity of a research experiment is the result of an analysis of records of observations of the animal’s behavior, and clinical signs. The aim of this study was to describe the importance of carrying out a severity assessment associated with clinical and behavioral monitoring of rodents and rabbits during experimentation to maintain the welfare of these animals undergoing scientific research. Methods: The literature search was carried out using the following terms: “Monitoring”;“Humane endpoints”;“Animal welfare”, “Rodents”;“Rabbits”, and as connectors “and”;“or”, in the following databases: PubMed;LILACS/BIREME and SciELO. Results: A total of 987 articles were identified in the databases, and 20 of these studies were included in this review. Conclusions: Humane endpoint protocols and procedure severity tables are of the utmost importance, both from an ethical point and to refine the results of research conducted on laboratory animals. They should be drawn up jointly by the teams responsible for the project and the maintenance of the animals during the research period, and the data obtained should be published so that the scientific community can have access to it, helping to disseminate these practices, as well as helping to draw up new procedures. Monitoring and evaluating the welfare and clinical condition of animals undergoing scientific research procedures is the responsibility of the professors, researchers, veterinarians, and animal facility coordinators. The Ethics Committee on the Use of Animals must monitor all the activities conducted with the animals, by inspecting the experimental procedures and the physical environment of the laboratory animal facility where the animals are housed.
文摘At the legislative level in China,there has been insufficient theoretical preparation to explicitly include“sexual autonomy”within the scope of general personality rights.In handling the increasing number of disputes related to violations of“sexual autonomy,”judicial biases have emerged during the trial process when courts determine the attribute of the right to“sexual autonomy.”This situation necessitates a clear legal analysis of the concept and attributes of“sexual autonomy”to establish its essential attribute as a personality right,and,from the perspective of legal doctrine,enable the justification of the right to“sexual autonomy”as either a general personality right or other personality interests,thereby providing theoretical support for courts to“adjudicate according to law.”By delineating and categorizing instances of violations of“sexual autonomy,”the constitutive elements and fundamental characteristics of such violations can be clarified.By examining the legal norms governing civil litigation and civil litigation associated with criminal cases concerning violations of“sexual autonomy,”the responsibility determination,remedies,and existing regulatory loopholes regarding violations of“sexual autonomy,”especially in cases involving both criminal and civil matters,can be defined.Based on this foundation,the legal basis,determination mechanism,and compensation standards for claiming compensation for mental damages resulting from violations of“sexual autonomy”can be elucidated.
文摘Modern drugs have changed epilepsy,which affects people of all ages.However,for young people with epilepsy,the framework of drug development has stalled.In the wake of the thalidomide catastrophe,the misconception emerged that for people<18 years of age drugs,including antiseizure medications(ASMs),need separate proof of efficacy and safety,overall called"pediatric drug development".For ASMs,this has changed to some degree.Authorities now accept that ASMs are effective in<18 years as well,but they still require"extrapolation of efficacy,"as if minors were another species.As a result,some of the pediatric clinical epilepsy research over the past decades was unnecessary.Even more importantly,this has hampered research on meaningful research goals.We do not need to confirm that ASMs work before as they do after the 18th birthday.Instead,we need to learn how to prevent brain damage in young patients by preventing seizures and optimize ASMs’uses.Herein we discuss how to proceed in this endeavor.
文摘The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission.
基金Zhaoqing Education Development Research Institute“Psychological Mechanism and Intervention Research on the Impact of Sports on College Students’Anxiety”(ZQJKY2023211)。
文摘This study aims to explore the impact of physical exercise on the anxiety level of college students.We collected physical exercise data and anxiety self-assessment results from college students of different grades,genders,and ages from multiple universities in Guangdong Province through a questionnaire survey.The study used standardized scales to evaluate participants’physical exercise types,frequencies,intensities,and anxiety levels.The data analysis results showed that there is a significant negative correlation between college students’physical exercise and anxiety level,that is,the more frequent and intense the physical exercise,the lower the anxiety level.In addition,there are differences in the effect of different types of physical exercises on anxiety relief,with aerobic exercises such as running and swimming showing more significant anxiety-relieving effects.The research results provide valuable references for psychological health education and anxiety intervention strategies in universities and suggest promoting physical exercise to effectively alleviate college students’anxiety.