The effect of involute contact ratio on the torsional vibration behavior ofspur gear-pair is studied analytically through a mass-spring model. The tooth stiffness in model notonly has a relation with time, as many pri...The effect of involute contact ratio on the torsional vibration behavior ofspur gear-pair is studied analytically through a mass-spring model. The tooth stiffness in model notonly has a relation with time, as many prior studies presented, but, more important, with involutecontact ratio (ICR) as well. The ICR embodies its impact on the spur gear's dynamic performancethrough changing the proportion of tooth stiffness when there are n+1 teeth in contact to toothstiffness when there are n teeth in contact. A couple of curves about impact of ICR on the gear'sdynamic performance are presented, and they clearly demonstrate that the model can accuratelydescribe the effects of ICR on dynamic transmission error. Finally, some conclusions useful toreduce vibration and noise of gear-pair are proposed.展开更多
文摘The effect of involute contact ratio on the torsional vibration behavior ofspur gear-pair is studied analytically through a mass-spring model. The tooth stiffness in model notonly has a relation with time, as many prior studies presented, but, more important, with involutecontact ratio (ICR) as well. The ICR embodies its impact on the spur gear's dynamic performancethrough changing the proportion of tooth stiffness when there are n+1 teeth in contact to toothstiffness when there are n teeth in contact. A couple of curves about impact of ICR on the gear'sdynamic performance are presented, and they clearly demonstrate that the model can accuratelydescribe the effects of ICR on dynamic transmission error. Finally, some conclusions useful toreduce vibration and noise of gear-pair are proposed.