The reaction mechanisms of carcinogenic methylating agent iodomethane (MeI) with keto and enol tautomers of thymine (K- and E-thymine) were studied by using the B3LYP/6-311+G (d, p) method in water phase. The s...The reaction mechanisms of carcinogenic methylating agent iodomethane (MeI) with keto and enol tautomers of thymine (K- and E-thymine) were studied by using the B3LYP/6-311+G (d, p) method in water phase. The solvent effects were examined using the polarizable continuum model (PCM). Specifically, PCM single-point calculations at the same level of theory were performed in acetone and CCl4 that represent a range in nonpolarity. The calculated results show that the reaction of K-thymine with MeI is a two-step mechanism, whereas that of E-thymine is a one-step mechanism. Our calculations reveal that K-thymine is appreciably more stable than the enol form in the water phase or in the two solvents. The K- and E-form reaction barriers are 135.6 and 222.1 kJ/mol, respectively in water phase. These findings indicate that the reactions mentioned above could not occur efficiently in biological media in the absence of catalyst. Our conclusions are in agreement with the previous studies on the reactions of guanine with methyl chloride and methyl bromide.展开更多
The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because curre...The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20763007)
文摘The reaction mechanisms of carcinogenic methylating agent iodomethane (MeI) with keto and enol tautomers of thymine (K- and E-thymine) were studied by using the B3LYP/6-311+G (d, p) method in water phase. The solvent effects were examined using the polarizable continuum model (PCM). Specifically, PCM single-point calculations at the same level of theory were performed in acetone and CCl4 that represent a range in nonpolarity. The calculated results show that the reaction of K-thymine with MeI is a two-step mechanism, whereas that of E-thymine is a one-step mechanism. Our calculations reveal that K-thymine is appreciably more stable than the enol form in the water phase or in the two solvents. The K- and E-form reaction barriers are 135.6 and 222.1 kJ/mol, respectively in water phase. These findings indicate that the reactions mentioned above could not occur efficiently in biological media in the absence of catalyst. Our conclusions are in agreement with the previous studies on the reactions of guanine with methyl chloride and methyl bromide.
基金supported by the Intergovernmental International Cooperation of the National Key R&D Program of China(2022YFE0105300)the National Natural Science Foundation of China(21790374, 22276130, 22176139, 21825601)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.